BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7562111)

  • 1. Poor fermentability of "mekabu" (sporophyll of Undaria pinnatifida) alginic acid in batch culture using pig cecal bacteria.
    Togari N; Ogawa N; Sakata T
    J Nutr Sci Vitaminol (Tokyo); 1995 Apr; 41(2):179-85. PubMed ID: 7562111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactitol enhances short-chain fatty acid and gas production by swine cecal microflora to a greater extent when fermenting low rather than high fiber diets.
    Piva A; Panciroli A; Meola E; Formigoni A
    J Nutr; 1996 Jan; 126(1):280-9. PubMed ID: 8558313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar composition of dietary fibre and short-chain fatty acid production during in vitro fermentation by human bacteria.
    Salvador V; Cherbut C; Barry JL; Bertrand D; Bonnet C; Delort-Laval J
    Br J Nutr; 1993 Jul; 70(1):189-97. PubMed ID: 8399101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat cecal microbiotas.
    An C; Kuda T; Yazaki T; Takahashi H; Kimura B
    Appl Environ Microbiol; 2013 Feb; 79(3):860-6. PubMed ID: 23183985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae.
    Wang D; Yun EJ; Kim S; Kim do H; Seo N; An HJ; Kim JH; Cheong NY; Kim KH
    Bioprocess Biosyst Eng; 2016 Jun; 39(6):959-66. PubMed ID: 26923145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal production of 4-deoxy-L-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases.
    Wang DM; Kim HT; Yun EJ; Kim DH; Park YC; Woo HC; Kim KH
    Bioprocess Biosyst Eng; 2014 Oct; 37(10):2105-11. PubMed ID: 24794171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria.
    Tsukahara T; Koyama H; Okada M; Ushida K
    J Nutr; 2002 Aug; 132(8):2229-34. PubMed ID: 12163667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterizartion of alginic acid from commercially cultured Nemacystus decipiens (Itomozuku).
    Tako M; Kiyuna S; Uechi S; Hongo F
    Biosci Biotechnol Biochem; 2001 Mar; 65(3):654-7. PubMed ID: 11330683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of fermentability of acid-treated maize husk by rat caecal bacteria in vivo and in vitro.
    Hara H; Saito Y; Nakashima H; Kiriyama S
    Br J Nutr; 1994 May; 71(5):719-29. PubMed ID: 8054327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of temperature on short-chain fatty acid production by pig cecal bacteria in vitro.
    Kobayashi D; Sakata T
    J Nutr Sci Vitaminol (Tokyo); 2006 Feb; 52(1):66-9. PubMed ID: 16637232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The measurement of production rates of volatile fatty acids in the caecum of the conscious rabbit.
    Parker DS
    Br J Nutr; 1976 Jul; 36(1):61-70. PubMed ID: 949469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probiotic preparations dose-dependently increase net production rates of organic acids and decrease that of ammonia by pig cecal bacteria in batch culture.
    Sakata T; Kojima T; Fujieda M; Miyakozawa M; Takahashi M; Ushida K
    Dig Dis Sci; 1999 Jul; 44(7):1485-93. PubMed ID: 10489936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of pH on the transfer of volatile fatty acids in the isolated cecal wall of the rat].
    Mottaz P; Worbe JF
    Reprod Nutr Dev (1980); 1980; 20(4B):1331-8. PubMed ID: 7349485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal variation in diet, volatile fatty acid production and size of the cecum of roch ptarmigan.
    Gasaway WC
    Comp Biochem Physiol A Comp Physiol; 1976 Jan; 53(1):109-14. PubMed ID: 175
    [No Abstract]   [Full Text] [Related]  

  • 15. Volatile fatty acids and metabolizable energy derived from cecal fermentation in the willow ptarmigan.
    Gasaway WC
    Comp Biochem Physiol A Comp Physiol; 1976 Jan; 53(1):115-21. PubMed ID: 177
    [No Abstract]   [Full Text] [Related]  

  • 16. Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume.
    Dijkstra J; Boer H; Van Bruchem J; Bruining M; Tamminga S
    Br J Nutr; 1993 Mar; 69(2):385-96. PubMed ID: 8489996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro production of short-chain fatty acids by bacterial fermentation of dietary fiber compared with effects of those fibers on hepatic sterol synthesis in rats.
    Stark AH; Madar Z
    J Nutr; 1993 Dec; 123(12):2166-73. PubMed ID: 8263612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro fermentation of alginate and its derivatives by human gut microbiota.
    Li M; Li G; Shang Q; Chen X; Liu W; Pi X; Zhu L; Yin Y; Yu G; Wang X
    Anaerobe; 2016 Jun; 39():19-25. PubMed ID: 26891629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propionic acid production by immobilized cells of a propionate-tolerant strain of Propionibacterium acidipropionici.
    Paik HD; Glatz BA
    Appl Microbiol Biotechnol; 1994 Oct; 42(1):22-7. PubMed ID: 7765817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistant proteins alter cecal short-chain fatty acid profiles in rats fed high amylose cornstarch.
    Morita T; Kasaoka S; Ohhashi A; Ikai M; Numasaki Y; Kiriyama S
    J Nutr; 1998 Jul; 128(7):1156-64. PubMed ID: 9649600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.