These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7562111)

  • 1. Poor fermentability of "mekabu" (sporophyll of Undaria pinnatifida) alginic acid in batch culture using pig cecal bacteria.
    Togari N; Ogawa N; Sakata T
    J Nutr Sci Vitaminol (Tokyo); 1995 Apr; 41(2):179-85. PubMed ID: 7562111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactitol enhances short-chain fatty acid and gas production by swine cecal microflora to a greater extent when fermenting low rather than high fiber diets.
    Piva A; Panciroli A; Meola E; Formigoni A
    J Nutr; 1996 Jan; 126(1):280-9. PubMed ID: 8558313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar composition of dietary fibre and short-chain fatty acid production during in vitro fermentation by human bacteria.
    Salvador V; Cherbut C; Barry JL; Bertrand D; Bonnet C; Delort-Laval J
    Br J Nutr; 1993 Jul; 70(1):189-97. PubMed ID: 8399101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat cecal microbiotas.
    An C; Kuda T; Yazaki T; Takahashi H; Kimura B
    Appl Environ Microbiol; 2013 Feb; 79(3):860-6. PubMed ID: 23183985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae.
    Wang D; Yun EJ; Kim S; Kim do H; Seo N; An HJ; Kim JH; Cheong NY; Kim KH
    Bioprocess Biosyst Eng; 2016 Jun; 39(6):959-66. PubMed ID: 26923145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal production of 4-deoxy-L-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases.
    Wang DM; Kim HT; Yun EJ; Kim DH; Park YC; Woo HC; Kim KH
    Bioprocess Biosyst Eng; 2014 Oct; 37(10):2105-11. PubMed ID: 24794171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria.
    Tsukahara T; Koyama H; Okada M; Ushida K
    J Nutr; 2002 Aug; 132(8):2229-34. PubMed ID: 12163667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterizartion of alginic acid from commercially cultured Nemacystus decipiens (Itomozuku).
    Tako M; Kiyuna S; Uechi S; Hongo F
    Biosci Biotechnol Biochem; 2001 Mar; 65(3):654-7. PubMed ID: 11330683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of fermentability of acid-treated maize husk by rat caecal bacteria in vivo and in vitro.
    Hara H; Saito Y; Nakashima H; Kiriyama S
    Br J Nutr; 1994 May; 71(5):719-29. PubMed ID: 8054327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of temperature on short-chain fatty acid production by pig cecal bacteria in vitro.
    Kobayashi D; Sakata T
    J Nutr Sci Vitaminol (Tokyo); 2006 Feb; 52(1):66-9. PubMed ID: 16637232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The measurement of production rates of volatile fatty acids in the caecum of the conscious rabbit.
    Parker DS
    Br J Nutr; 1976 Jul; 36(1):61-70. PubMed ID: 949469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probiotic preparations dose-dependently increase net production rates of organic acids and decrease that of ammonia by pig cecal bacteria in batch culture.
    Sakata T; Kojima T; Fujieda M; Miyakozawa M; Takahashi M; Ushida K
    Dig Dis Sci; 1999 Jul; 44(7):1485-93. PubMed ID: 10489936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of pH on the transfer of volatile fatty acids in the isolated cecal wall of the rat].
    Mottaz P; Worbe JF
    Reprod Nutr Dev (1980); 1980; 20(4B):1331-8. PubMed ID: 7349485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal variation in diet, volatile fatty acid production and size of the cecum of roch ptarmigan.
    Gasaway WC
    Comp Biochem Physiol A Comp Physiol; 1976 Jan; 53(1):109-14. PubMed ID: 175
    [No Abstract]   [Full Text] [Related]  

  • 15. Volatile fatty acids and metabolizable energy derived from cecal fermentation in the willow ptarmigan.
    Gasaway WC
    Comp Biochem Physiol A Comp Physiol; 1976 Jan; 53(1):115-21. PubMed ID: 177
    [No Abstract]   [Full Text] [Related]  

  • 16. Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume.
    Dijkstra J; Boer H; Van Bruchem J; Bruining M; Tamminga S
    Br J Nutr; 1993 Mar; 69(2):385-96. PubMed ID: 8489996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro production of short-chain fatty acids by bacterial fermentation of dietary fiber compared with effects of those fibers on hepatic sterol synthesis in rats.
    Stark AH; Madar Z
    J Nutr; 1993 Dec; 123(12):2166-73. PubMed ID: 8263612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro fermentation of alginate and its derivatives by human gut microbiota.
    Li M; Li G; Shang Q; Chen X; Liu W; Pi X; Zhu L; Yin Y; Yu G; Wang X
    Anaerobe; 2016 Jun; 39():19-25. PubMed ID: 26891629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propionic acid production by immobilized cells of a propionate-tolerant strain of Propionibacterium acidipropionici.
    Paik HD; Glatz BA
    Appl Microbiol Biotechnol; 1994 Oct; 42(1):22-7. PubMed ID: 7765817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistant proteins alter cecal short-chain fatty acid profiles in rats fed high amylose cornstarch.
    Morita T; Kasaoka S; Ohhashi A; Ikai M; Numasaki Y; Kiriyama S
    J Nutr; 1998 Jul; 128(7):1156-64. PubMed ID: 9649600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.