These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 7562413)

  • 1. Shear stress synergism index and relative thixotropic area.
    Dolz M; Hernández MJ; Pellicer J; Delegido J
    J Pharm Sci; 1995 Jun; 84(6):728-32. PubMed ID: 7562413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thixotropy of different concentrations of microcrystalline cellulose:sodium carboxymethyl cellulose gels.
    Dolz-Planas M; Roldan-Garcia C; Herraez-Dominguez JV; Belda-Maximino R
    J Pharm Sci; 1991 Jan; 80(1):75-9. PubMed ID: 2013855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):53-61. PubMed ID: 15725553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thixotropy of highly viscous sodium (carboxymethyl)cellulose hydrogels.
    Dolz M; Bugaj J; Pellicer J; Hernández MJ; Górecki M
    J Pharm Sci; 1997 Nov; 86(11):1283-7. PubMed ID: 9383741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology of Microcrystalline Cellulose and Sodiumcarboxymethyl Cellulose hydrogels using a controlled stress rheometer: part II.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):63-73. PubMed ID: 15725554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow and Thixotropic Parameters for Rheological Characterization of Hydrogels.
    Ghica MV; Hîrjău M; Lupuleasa D; Dinu-Pîrvu CE
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27322222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thixotropic behavior of a microcrystalline cellulose-sodium carboxymethylcellulose gel.
    Dolz-Planas M; González-Rodriguez F; Belda-Maximino R; Herraez-Dominguez JV
    J Pharm Sci; 1988 Sep; 77(9):799-801. PubMed ID: 3225776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of in-line viscometer for in-process monitoring of microcrystalline cellulose-carboxymethylcellulose hydrogel formation during batch manufacturing.
    Pu Y; Chaudhry S; Parikh M; Berry J
    Drug Dev Ind Pharm; 2015 Jan; 41(1):28-34. PubMed ID: 24617347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic evaluation of topical creams containing microcrystalline cellulose/sodium carboxymethyl cellulose as stabilizer.
    Adeyeye MC; Jain AC; Ghorab MK; Reilly WJ
    AAPS PharmSciTech; 2002; 3(2):E8. PubMed ID: 12916945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory rheology of carboxymethyl cellulose gels: Influence of concentration and pH.
    Lopez CG; Richtering W
    Carbohydr Polym; 2021 Sep; 267():118117. PubMed ID: 34119123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study.
    Xiong J; Li Q; Shi Z; Ye J
    Food Res Int; 2017 Oct; 100(Pt 1):858-863. PubMed ID: 28873759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cellulose derivative hydrocolloids on pasting, viscoelastic, and morphological characteristics of rice starch gel.
    Sun J; Zuo XB; Fang S; Xu HN; Chen J; Meng YC; Chen T
    J Texture Stud; 2017 Jun; 48(3):241-248. PubMed ID: 28573725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of the interactive properties of microcrystalline cellulose-carboxymethyl cellulose hydrogels.
    Zhao GH; Kapur N; Carlin B; Selinger E; Guthrie JT
    Int J Pharm; 2011 Aug; 415(1-2):95-101. PubMed ID: 21645595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives.
    Keshavarz M; Kaffashi B
    Pharm Dev Technol; 2014 Dec; 19(8):952-9. PubMed ID: 24160773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rheological properties of modified microcrystalline cellulose containing high levels of model drugs.
    Knight PE; Podczeck F; Newton JM
    J Pharm Sci; 2009 Jun; 98(6):2160-9. PubMed ID: 18825774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thixotropic properties of waxy potato starch depending on the degree of the granules pasting.
    Krystyjan M; Sikora M; Adamczyk G; Dobosz A; Tomasik P; Berski W; Łukasiewicz M; Izak P
    Carbohydr Polym; 2016 May; 141():126-34. PubMed ID: 26877004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimuli-responsive injectable cellulose thixogel for cell encapsulation.
    Sanandiya ND; Vasudevan J; Das R; Lim CT; Fernandez JG
    Int J Biol Macromol; 2019 Jun; 130():1009-1017. PubMed ID: 30851322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheology of fluoride gels.
    Braden M; Perera R
    J Dent Res; 1976; 55(3):353-6. PubMed ID: 1063745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological characterisation of primary and binary interactive bioadhesive gels composed of cellulose derivatives designed as ophthalmic viscosurgical devices.
    Andrews GP; Gorman SP; Jones DS
    Biomaterials; 2005 Feb; 26(5):571-80. PubMed ID: 15276365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of the medium composition on the properties of gels based on sodium carboxymethylcellulose].
    Szcześniak M; Gasztych M; Pluta J
    Polim Med; 2013; 43(4):235-9. PubMed ID: 24596039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.