These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7562656)

  • 1. Experiments in dysarthric speech recognition using artificial neural networks.
    Jayaram G; Abdelhamied K
    J Rehabil Res Dev; 1995 May; 32(2):162-9. PubMed ID: 7562656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals.
    Polur PD; Miller GE
    Med Eng Phys; 2006 Oct; 28(8):741-8. PubMed ID: 16359906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experiments with fast Fourier transform, linear predictive and cepstral coefficients in dysarthric speech recognition algorithms using hidden Markov Model.
    Polur PD; Miller GE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):558-61. PubMed ID: 16425838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-views multi-learners approach towards dysarthric speech recognition using multi-nets artificial neural networks.
    Shahamiri SR; Salim SS
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1053-63. PubMed ID: 24760940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A statistical causal model for the assessment of dysarthric speech and the utility of computer-based speech recognition.
    Sy BK; Horowitz DM
    IEEE Trans Biomed Eng; 1993 Dec; 40(12):1282-98. PubMed ID: 8125504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysarthric speech: a comparison of computerized speech recognition and listener intelligibility.
    Doyle PC; Leeper HA; Kotler AL; Thomas-Stonell N; O'Neill C; Dylke MC; Rolls K
    J Rehabil Res Dev; 1997 Jul; 34(3):309-16. PubMed ID: 9239624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of listening conditions and listener characteristics on intelligibility of dysarthric speech.
    Pennington L; Miller N
    Clin Linguist Phon; 2007 May; 21(5):393-403. PubMed ID: 17468997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of high-frequency spectral components in computer recognition of dysarthric speech based on a Mel-cepstral stochastic model.
    Polur PD; Miller GE
    J Rehabil Res Dev; 2005; 42(3):363-71. PubMed ID: 16187248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech rate effects upon intelligibility and acceptability of dysarthric speech.
    Dagenais PA; Brown GR; Moore RE
    Clin Linguist Phon; 2006; 20(2-3):141-8. PubMed ID: 16428230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of rate control on speech rate and intelligibility of dysarthric speech.
    Van Nuffelen G; De Bodt M; Wuyts F; Van de Heyning P
    Folia Phoniatr Logop; 2009; 61(2):69-75. PubMed ID: 19287175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear implantation in children with cerebral palsy. A preliminary report.
    Bacciu A; Pasanisi E; Vincenti V; Ormitti F; Di Lella F; Guida M; Berghenti M; Bacciu S
    Int J Pediatr Otorhinolaryngol; 2009 May; 73(5):717-21. PubMed ID: 19201488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of speech intelligibility for children with cleft lip and palate by means of automatic speech recognition.
    Schuster M; Maier A; Haderlein T; Nkenke E; Wohlleben U; Rosanowski F; Eysholdt U; Nöth E
    Int J Pediatr Otorhinolaryngol; 2006 Oct; 70(10):1741-7. PubMed ID: 16814875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic speech recognition and training for severely dysarthric users of assistive technology: the STARDUST project.
    Parker M; Cunningham S; Enderby P; Hawley M; Green P
    Clin Linguist Phon; 2006; 20(2-3):149-56. PubMed ID: 16428231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utterance-based proposed spot diagnostic system of vocal tract malfunction.
    Fayed ZT
    Biomed Sci Instrum; 2001; 37():485-91. PubMed ID: 11347439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of bionic wavelet transform to speech signal processing in cochlear implants using neural network simulations.
    Yao J; Zhang YT
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1299-309. PubMed ID: 12450360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and perception of mandarin tone in adults with cerebral palsy.
    Jeng JY; Weismer G; Kent RD
    Clin Linguist Phon; 2006; 20(1):67-87. PubMed ID: 16393799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On building models of spoken-word recognition: when there is as much to learn from natural "oddities" as artificial normality.
    Mattys SL; Liss JM
    Percept Psychophys; 2008 Oct; 70(7):1235-42. PubMed ID: 18927006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of training on word-recognition performance in noise for young normal-hearing and older hearing-impaired listeners.
    Burk MH; Humes LE; Amos NE; Strauser LE
    Ear Hear; 2006 Jun; 27(3):263-78. PubMed ID: 16672795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voice recognition device as a computer interface for motor and speech impaired people.
    Fried-Oken M
    Arch Phys Med Rehabil; 1985 Oct; 66(10):678-81. PubMed ID: 2932084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial neural network based identification of Campylobacter species by Fourier transform infrared spectroscopy.
    Mouwen DJ; Capita R; Alonso-Calleja C; Prieto-Gómez J; Prieto M
    J Microbiol Methods; 2006 Oct; 67(1):131-40. PubMed ID: 16632003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.