BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 7563025)

  • 1. The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers.
    Thwaites DT; McEwan GT; Simmons NL
    J Membr Biol; 1995 Jun; 145(3):245-56. PubMed ID: 7563025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H(+)-coupled alpha-methylaminoisobutyric acid transport in human intestinal Caco-2 cells.
    Thwaites DT; McEwan GT; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1995 Mar; 1234(1):111-8. PubMed ID: 7880851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L-alanine absorption in human intestinal Caco-2 cells driven by the proton electrochemical gradient.
    Thwaites DT; McEwan GT; Brown CD; Hirst BH; Simmons NL
    J Membr Biol; 1994 Jun; 140(2):143-51. PubMed ID: 7932648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-cycloserine transport in human intestinal epithelial (Caco-2) cells: mediation by a H(+)-coupled amino acid transporter.
    Thwaites DT; Armstrong G; Hirst BH; Simmons NL
    Br J Pharmacol; 1995 Jul; 115(5):761-6. PubMed ID: 8548174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na(+)-independent, H(+)-coupled transepithelial beta-alanine absorption by human intestinal Caco-2 cell monolayers.
    Thwaites DT; McEwan GT; Brown CD; Hirst BH; Simmons NL
    J Biol Chem; 1993 Sep; 268(25):18438-41. PubMed ID: 8395502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gamma-Aminobutyric acid (GABA) transport across human intestinal epithelial (Caco-2) cell monolayers.
    Thwaites DT; Basterfield L; McCleave PM; Carter SM; Simmons NL
    Br J Pharmacol; 2000 Feb; 129(3):457-64. PubMed ID: 10711343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers.
    Nøhr MK; Hansen SH; Brodin B; Holm R; Nielsen CU
    Eur J Pharm Sci; 2014 Jan; 51():1-10. PubMed ID: 24008184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H(+)-coupled (Na(+)-independent) proline transport in human intestinal (Caco-2) epithelial cell monolayers.
    Thwaites DT; McEwan GT; Cook MJ; Hirst BH; Simmons NL
    FEBS Lett; 1993 Oct; 333(1-2):78-82. PubMed ID: 8224175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transepithelial dipeptide (glycylsarcosine) transport across epithelial monolayers of human Caco-2 cells is rheogenic.
    Thwaites DT; McEwan GT; Hirst BH; Simmons NL
    Pflugers Arch; 1993 Oct; 425(1-2):178-80. PubMed ID: 8272376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (Caco-2): identification of substrates that undergo H(+)-coupled absorption.
    Thwaites DT; Hirst BH; Simmons NL
    Br J Pharmacol; 1994 Nov; 113(3):1050-6. PubMed ID: 7858848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vigabatrin transport across the human intestinal epithelial (Caco-2) brush-border membrane is via the H+ -coupled amino-acid transporter hPAT1.
    Abbot EL; Grenade DS; Kennedy DJ; Gatfield KM; Thwaites DT
    Br J Pharmacol; 2006 Feb; 147(3):298-306. PubMed ID: 16331283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H(+)-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics.
    Thwaites DT; Brown CD; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1993 Sep; 1151(2):237-45. PubMed ID: 8373798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells.
    Thwaites DT; Cavet M; Hirst BH; Simmons NL
    Br J Pharmacol; 1995 Mar; 114(5):981-6. PubMed ID: 7780654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transport of acidic amino acids and their analogues across monolayers of human intestinal absorptive (Caco-2) cells in vitro.
    Nicklin PL; Irwin WJ; Hassan IF; Mackay M; Dixon HB
    Biochim Biophys Acta; 1995 Nov; 1269(2):176-86. PubMed ID: 7488651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid transport by intestinal brush border vesicles of a marine fish, Boops salpa.
    Bogé G; Roche H; Balocco C
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Jan; 131(1):19-26. PubMed ID: 11742754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutral amino acid symport in larval Manduca sexta midgut brush-border membrane vesicles deduced from cation-dependent uptake of leucine, alanine, and phenylalanine.
    Hennigan BB; Wolfersberger MG; Harvey WR
    Biochim Biophys Acta; 1993 Jun; 1148(2):216-22. PubMed ID: 8504116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H+-zwitterionic amino acid symport at the brush-border membrane of human intestinal epithelial (CACO-2) cells.
    Thwaites DT; Stevens BC
    Exp Physiol; 1999 Mar; 84(2):275-84. PubMed ID: 10226170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiology of L-lysine entry across the brush-border membrane of Necturus intestine.
    Acevedo M; Armstrong WM
    Biochim Biophys Acta; 1987 Jan; 896(2):295-304. PubMed ID: 3099841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-independent lysine transport in human intestinal Caco-2 cells.
    Thwaites DT; Markovich D; Murer H; Simmons NL
    J Membr Biol; 1996 Jun; 151(3):215-24. PubMed ID: 8661509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, function and immunolocalization of a proton-coupled amino acid transporter (hPAT1) in the human intestinal cell line Caco-2.
    Chen Z; Fei YJ; Anderson CM; Wake KA; Miyauchi S; Huang W; Thwaites DT; Ganapathy V
    J Physiol; 2003 Jan; 546(Pt 2):349-61. PubMed ID: 12527723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.