These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 7563983)
21. Reactive oxygen molecule-mediated injury in endothelial and renal tubular epithelial cells in vitro. Andreoli SP; McAteer JA Kidney Int; 1990 Nov; 38(5):785-94. PubMed ID: 2176255 [TBL] [Abstract][Full Text] [Related]
22. Identification of agents that reduce renal hypoxia-reoxygenation injury using cell-based screening: purine nucleosides are alternative energy sources in LLC-PK1 cells during hypoxia. Szoleczky P; Módis K; Nagy N; Dóri Tóth Z; DeWitt D; Szabó C; Gero D Arch Biochem Biophys; 2012 Jan; 517(1):53-70. PubMed ID: 22100704 [TBL] [Abstract][Full Text] [Related]
23. Cyclosporine A-induced toxicity in two renal cell culture models (LLC-PK1 and MDCK). Rezzani R; Angoscini P; Borsani E; Rodella L; Bianchi R Histochem J; 2002; 34(1-2):27-33. PubMed ID: 12365797 [TBL] [Abstract][Full Text] [Related]
24. Vitamin E prevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion. Tagami M; Yamagata K; Ikeda K; Nara Y; Fujino H; Kubota A; Numano F; Yamori Y Lab Invest; 1998 Nov; 78(11):1415-29. PubMed ID: 9840616 [TBL] [Abstract][Full Text] [Related]
25. Reactive oxygen species and rat renal epithelial cells during hypoxia and reoxygenation. Paller MS; Neumann TV Kidney Int; 1991 Dec; 40(6):1041-9. PubMed ID: 1662318 [TBL] [Abstract][Full Text] [Related]
26. Roles of oxygen radical production and lipid peroxidation in the cytotoxicity of cephaloridine on cultured renal epithelial cells (LLC-PK1). Kiyomiya K; Matsushita N; Matsuo S; Kurebe M J Vet Med Sci; 2000 Sep; 62(9):977-81. PubMed ID: 11039594 [TBL] [Abstract][Full Text] [Related]
27. Mechanisms of hippocampal reoxygenation injury. Treatment with antioxidants. Horáková L; Stolc S; Chromíková Z; Pekárová A; Derková L Neuropharmacology; 1997 Feb; 36(2):177-84. PubMed ID: 9144655 [TBL] [Abstract][Full Text] [Related]
28. Hypoxia and reoxygenation of the lung tissues induced mRNA expressions of superoxide dismutase and catalase and interventions from different antioxidants. Shen CY; Lee JF; Su CL; Wang D; Chen CF Transplant Proc; 2008 Sep; 40(7):2182-4. PubMed ID: 18790186 [TBL] [Abstract][Full Text] [Related]
29. Dimethylthiourea, an oxygen radical scavenger, protects isolated cardiac myocytes from hypoxic injury by inhibition of Na(+)-Ca2+ exchange and not by its antioxidant effects. Ziegelstein RC; Zweier JL; Mellits ED; Younes A; Lakatta EG; Stern MD; Silverman HS Circ Res; 1992 Apr; 70(4):804-11. PubMed ID: 1551203 [TBL] [Abstract][Full Text] [Related]
30. A new low molecular weight, MnII-containing scavenger of superoxide anion protects cardiac muscle cells from hypoxia/reoxygenation injury. Nistri S; Boccalini G; Bencini A; Becatti M; Valtancoli B; Conti L; Lucarini L; Bani D Free Radic Res; 2015 Jan; 49(1):67-77. PubMed ID: 25348343 [TBL] [Abstract][Full Text] [Related]
31. Cellular mechanism of U78517F in the protection of porcine coronary artery endothelial cells from oxygen radical-induced damage. Maeda K; Kimura M; Hayashi S Br J Pharmacol; 1993 Apr; 108(4):1077-82. PubMed ID: 8485619 [TBL] [Abstract][Full Text] [Related]
32. The mechanism of free radical generation in brain capillary endothelial cells after anoxia and reoxygenation. Wu S; Nagashima T; Ikeda K; Kondoh T; Yamaguchi M; Tamaki N Acta Neurochir Suppl; 1997; 70():37-9. PubMed ID: 9416271 [TBL] [Abstract][Full Text] [Related]
33. Effect of melatonin on production of hydroxyl radical and lactate dehydrogenase during hypoxia in rat cortical slices. Li XJ; Gu J; Pan BS; Sun FY Zhongguo Yao Li Xue Bao; 1999 Mar; 20(3):201-5. PubMed ID: 10452092 [TBL] [Abstract][Full Text] [Related]
34. Role of oxidative stress in nickel chloride-induced cell injury in rat renal cortical slices. Chakrabarti SK; Bai C Biochem Pharmacol; 1999 Nov; 58(9):1501-10. PubMed ID: 10513994 [TBL] [Abstract][Full Text] [Related]
35. Role of reactive oxygen metabolites in organophosphate-bidrin-induced renal tubular cytotoxicity. Poovala VS; Huang H; Salahudeen AK J Am Soc Nephrol; 1999 Aug; 10(8):1746-52. PubMed ID: 10446942 [TBL] [Abstract][Full Text] [Related]
36. Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: effect of α-tocopherol and ascorbic acid. Thamilselvan V; Menon M; Thamilselvan S BJU Int; 2014 Jul; 114(1):140-50. PubMed ID: 24460843 [TBL] [Abstract][Full Text] [Related]
37. Role of oxidative stress in hypoxia-reoxygenation injury to cultured rat hepatic sinusoidal endothelial cells. Samarasinghe DA; Tapner M; Farrell GC Hepatology; 2000 Jan; 31(1):160-5. PubMed ID: 10613741 [TBL] [Abstract][Full Text] [Related]
38. Mechanisms of reoxygenation injury in cultured ventricular myocytes. Quaife RA; Kohmoto O; Barry WH Circulation; 1991 Feb; 83(2):566-77. PubMed ID: 1991375 [TBL] [Abstract][Full Text] [Related]
39. Superoxide dismutase does protect the cultured rat cardiac myocytes against hypoxia/reoxygenation injury. Qian ZM; Xu MF; Tang PL Free Radic Res; 1997 Jul; 27(1):13-21. PubMed ID: 9269575 [TBL] [Abstract][Full Text] [Related]
40. The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. Matsushima H; Yonemura K; Ohishi K; Hishida A J Lab Clin Med; 1998 Jun; 131(6):518-26. PubMed ID: 9626987 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]