These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 756489)

  • 1. Phloretin-like action of bioflavonoids on sugar accumulation capability of isolated intestinal cells.
    Kimmich GA; Randles J
    Membr Biochem; 1978; 1(3-4):221-37. PubMed ID: 756489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials.
    Kimmich GA; Carter-Su C; Randles J
    Am J Physiol; 1977 Nov; 233(5):E357-62. PubMed ID: 562624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of phloretin and theophylline on 3-O-methylglucose transport by intestinal epithelial cells.
    Randles J; Kimmich GA
    Am J Physiol; 1978 Mar; 234(3):C64-72. PubMed ID: 629334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.
    Kimmich GA; Randles J
    J Membr Biol; 1975 Aug; 23(1):57-76. PubMed ID: 1165580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.
    Kimmich GA; Randles J
    Am J Physiol; 1981 Nov; 241(5):C227-32. PubMed ID: 7304734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+-dependent sugar transport in a cultured epithelial cell line from pig kidney.
    Rabito CA; Ausiello DA
    J Membr Biol; 1980; 54(1):31-8. PubMed ID: 7205941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal transport: studies with isolated epithelial cells.
    Kimmich GA
    Environ Health Perspect; 1979 Dec; 33():37-44. PubMed ID: 540624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal sugar transport in experimental diabetes.
    Csáky TZ; Fischer E
    Diabetes; 1981 Jul; 30(7):568-74. PubMed ID: 6454600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanistic nature of the membrane potential dependence of sodium-sugar cotransport in small intestine.
    Restrepo D; Kimmich GA
    J Membr Biol; 1985; 87(2):159-72. PubMed ID: 4078884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of cellular cyclic AMP in theophylline-induced sugar accumulation in chicken intestinal epithelial cells.
    Moretó M; Planas JM; De Gabriel C; Santos FJ
    Biochim Biophys Acta; 1984 Mar; 771(1):68-73. PubMed ID: 6322846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of phloretin on Na+-dependent D-glucose uptake by intestinal brush border membrane vesicles.
    Yokota K; Nishi Y; Takesue Y
    Biochem Pharmacol; 1983 Nov; 32(22):3453-7. PubMed ID: 6651868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Na+-dependent sugar transport in intestinal epithelial cells by exogenous ATP.
    Kimmich G; Randles J
    Am J Physiol; 1980 May; 238(5):C177-83. PubMed ID: 7377337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of vascular perfusion on the accumulation, distribution and transfer of 3-O-methyl-D-glucose within and across the small intestine.
    Boyd CA; Parsons DS
    J Physiol; 1978 Jan; 274():17-36. PubMed ID: 304890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hexose transport system in the human K-562 chronic myelogenous leukemia-derived cell.
    Dozier JC; Diedrich DF; Turco SJ
    J Cell Physiol; 1981 Jul; 108(1):77-82. PubMed ID: 6943146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon.
    Blais A; Bissonnette P; Berteloot A
    J Membr Biol; 1987; 99(2):113-25. PubMed ID: 3123697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line. Sodium electrochemical potential-mediated active sugar transport.
    Lever JE
    J Biol Chem; 1982 Aug; 257(15):8680-86. PubMed ID: 7096329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-Deoxyglucose transport by intestinal epithelial cells isolated from the chick.
    Kimmich GA; Randles J
    J Membr Biol; 1976 Jun; 27(4):363-79. PubMed ID: 966264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Na+-dependent sugar carrier as a sensor of the cellular electrochemical Na+ potential.
    Kimmich GA
    Prog Clin Biol Res; 1981; 73():129-42. PubMed ID: 7323079
    [No Abstract]   [Full Text] [Related]  

  • 19. Sugar absorption and secretion by winter flounder intestine.
    Naftalin RJ; Kleinzeller A
    Am J Physiol; 1981 May; 240(5):G392-400. PubMed ID: 7235027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-coupled sugar transport: membrane potential-dependent Km and Ki for Na+.
    Kimmich GA; Randles J
    Am J Physiol; 1988 Oct; 255(4 Pt 1):C486-94. PubMed ID: 3177623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.