These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7564976)

  • 21. Body fat standards and individual physical readiness in a randomized Army sample: screening weights, methods of fat assessment, and linkage to physical fitness.
    Friedl KE; Leu JR
    Mil Med; 2002 Dec; 167(12):994-1000. PubMed ID: 12502174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of body composition assessment by hydrodensitometry, skinfolds, and multiple site near-infrared spectrophotometry.
    Hortobágyi T; Israel RG; Houmard JA; McCammon MR; O'Brien KF
    Eur J Clin Nutr; 1992 Mar; 46(3):205-11. PubMed ID: 1559525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of body composition changes with weight loss in postmenopausal women: comparison of methods.
    Mahon AK; Flynn MG; Iglay HB; Stewart LK; Johnson CA; McFarlin BK; Campbell WW
    J Nutr Health Aging; 2007; 11(3):203-13. PubMed ID: 17508096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of proposed improvements to the Army Weight Control Program on female soldiers.
    Bathalon GP; McGraw SM; Sharp MA; Williamson DA; Young AJ; Friedl KE
    Mil Med; 2006 Aug; 171(8):800-5. PubMed ID: 16933828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of Body Composition Measurements in Lean Female Athletes.
    Houska CL; Kemp JD; Niles JS; Morgan AL; Tucker RM; Ludy MJ
    Int J Exerc Sci; 2018; 11(4):417-424. PubMed ID: 29795733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison between dual-energy X-ray absorptiometry and skinfold thickness in assessing body fat in overweigh/obese adult patients with type-2 diabetes.
    Bacchi E; Cavedon V; Zancanaro C; Moghetti P; Milanese C
    Sci Rep; 2017 Dec; 7(1):17424. PubMed ID: 29234125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting body composition by densitometry from simple anthropometric measurements.
    Lean ME; Han TS; Deurenberg P
    Am J Clin Nutr; 1996 Jan; 63(1):4-14. PubMed ID: 8604668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of predicted body fat percentage from anthropometric methods and from impedance in university students.
    Arroyo M; Rocandio AM; Ansotegui L; Herrera H; Salces I; Rebato E
    Br J Nutr; 2004 Nov; 92(5):827-32. PubMed ID: 15533272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validity of "generalized" equations for body composition analysis in male athletes.
    Sinning WE; Dolny DG; Little KD; Cunningham LN; Racaniello A; Siconolfi SF; Sholes JL
    Med Sci Sports Exerc; 1985 Feb; 17(1):124-30. PubMed ID: 3982266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Field methods for body composition assessment are valid in healthy chinese adults.
    Yao M; Roberts SB; Ma G; Pan H; McCrory MA
    J Nutr; 2002 Feb; 132(2):310-7. PubMed ID: 11823597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of hand-to-hand bioimpedance and anthropometry equations versus dual-energy X-ray absorptiometry for the assessment of body fat percentage in 17-18-year-old conscripts.
    Lintsi M; Kaarma H; Kull I
    Clin Physiol Funct Imaging; 2004 Mar; 24(2):85-90. PubMed ID: 15056180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New body fat prediction equations for severely obese patients.
    Horie LM; Barbosa-Silva MC; Torrinhas RS; de Mello MT; Cecconello I; Waitzberg DL
    Clin Nutr; 2008 Jun; 27(3):350-6. PubMed ID: 18501481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Height, weight, percent body fat, and indices of adiposity for young men and women entering the U.S. Army.
    Knapik JJ; Burse RL; Vogel JA
    Aviat Space Environ Med; 1983 Mar; 54(3):223-31. PubMed ID: 6847557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New equations improve NIR prediction of body fat among high school wrestlers.
    Oppliger RA; Clark RR; Nielsen DH
    J Orthop Sports Phys Ther; 2000 Sep; 30(9):536-43. PubMed ID: 10994863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of military circumference equations to skinfold-based equations to estimate body composition.
    Babcock CJ; Kirby TE; McCarroll ML; Devor ST
    Mil Med; 2006 Jan; 171(1):60-3. PubMed ID: 16532876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Risk factors associated with higher body fat in US Army female soldiers.
    Anderson MK; Grier T; Canham-Chervak M; Bushman TT; Jones BH
    US Army Med Dep J; 2014; ():75-82. PubMed ID: 24706247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validity of percent body fat predicted from circumferences: classification of men for weight control regulations.
    Friedl KE; Vogel JA
    Mil Med; 1997 Mar; 162(3):194-200. PubMed ID: 9121667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Percent body fat estimation from skin fold thickness in the elderly. Development of a population-based prediction equation and comparison with published equations in 75-year-olds.
    Gause-Nilsson I; Dey DK
    J Nutr Health Aging; 2005; 9(1):19-24. PubMed ID: 15750661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predictive equations for body fat and abdominal fat with DXA and MRI as reference in Asian Indians.
    Goel K; Gupta N; Misra A; Poddar P; Pandey RM; Vikram NK; Wasir JS
    Obesity (Silver Spring); 2008 Feb; 16(2):451-6. PubMed ID: 18239658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of anthropometry to DXA: a new prediction equation for men.
    Ball SD; Altena TS; Swan PD
    Eur J Clin Nutr; 2004 Nov; 58(11):1525-31. PubMed ID: 15162135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.