These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 7565345)
1. Segmentation of mammograms using multiple linked self-organizing neural networks. Suckling J; Dance DR; Moskovic E; Lewis DJ; Blacker SG Med Phys; 1995 Feb; 22(2):145-52. PubMed ID: 7565345 [TBL] [Abstract][Full Text] [Related]
2. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision. Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257 [TBL] [Abstract][Full Text] [Related]
3. An automated confirmatory system for analysis of mammograms. Peng W; Mayorga RV; Hussein EM Comput Methods Programs Biomed; 2016 Mar; 125():134-44. PubMed ID: 26742491 [TBL] [Abstract][Full Text] [Related]
4. Computerized image analysis: estimation of breast density on mammograms. Zhou C; Chan HP; Petrick N; Helvie MA; Goodsitt MM; Sahiner B; Hadjiiski LM Med Phys; 2001 Jun; 28(6):1056-69. PubMed ID: 11439475 [TBL] [Abstract][Full Text] [Related]
5. Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture. Bakic PR; Albert M; Brzakovic D; Maidment AD Med Phys; 2002 Sep; 29(9):2140-51. PubMed ID: 12349936 [TBL] [Abstract][Full Text] [Related]
6. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Mavroforakis ME; Georgiou HV; Dimitropoulos N; Cavouras D; Theodoridis S Artif Intell Med; 2006 Jun; 37(2):145-62. PubMed ID: 16716579 [TBL] [Abstract][Full Text] [Related]
7. Parameter optimization of a computer-aided diagnosis scheme for the segmentation of microcalcification clusters in mammograms. Gavrielides MA; Lo JY; Floyd CE Med Phys; 2002 Apr; 29(4):475-83. PubMed ID: 11998828 [TBL] [Abstract][Full Text] [Related]
9. Measuring image texture to separate "difficult" from "easy" mammograms. Taylor P; Hajnal S; Dilhuydy MH; Barreau B Br J Radiol; 1994 May; 67(797):456-63. PubMed ID: 8193892 [TBL] [Abstract][Full Text] [Related]
10. A preliminary study on computerized lesion localization in MR mammography using 3D nMITR maps, multilayer cellular neural networks, and fuzzy c-partitioning. Ertas G; Gulcur HO; Tunaci M; Osman O; Ucan ON Med Phys; 2008 Jan; 35(1):195-205. PubMed ID: 18293575 [TBL] [Abstract][Full Text] [Related]
11. Full-field digital mammographic interpretation with prior analog versus prior digitized analog mammography: time for interpretation. Garg AS; Rapelyea JA; Rechtman LR; Torrente J; Bittner RB; Coffey CM; Brem RF AJR Am J Roentgenol; 2011 Jun; 196(6):1436-8. PubMed ID: 21606310 [TBL] [Abstract][Full Text] [Related]
12. Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images. Wei J; Chan HP; Helvie MA; Roubidoux MA; Sahiner B; Hadjiiski LM; Zhou C; Paquerault S; Chenevert T; Goodsitt MM Med Phys; 2004 Apr; 31(4):933-42. PubMed ID: 15125012 [TBL] [Abstract][Full Text] [Related]
13. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Wu Y; Giger ML; Doi K; Vyborny CJ; Schmidt RA; Metz CE Radiology; 1993 Apr; 187(1):81-7. PubMed ID: 8451441 [TBL] [Abstract][Full Text] [Related]
14. Classification of mass and normal breast tissue on digital mammograms: multiresolution texture analysis. Wei D; Chan HP; Helvie MA; Sahiner B; Petrick N; Adler DD; Goodsitt MM Med Phys; 1995 Sep; 22(9):1501-13. PubMed ID: 8531882 [TBL] [Abstract][Full Text] [Related]
15. A regional registration technique for automated interval change analysis of breast lesions on mammograms. Sanjay-Gopal S; Chan HP; Wilson T; Helvie M; Petrick N; Sahiner B Med Phys; 1999 Dec; 26(12):2669-79. PubMed ID: 10619252 [TBL] [Abstract][Full Text] [Related]
16. Experimental investigation on breast tissue classification based on statistical feature extraction of mammograms. Sheshadri HS; Kandaswamy A Comput Med Imaging Graph; 2007 Jan; 31(1):46-8. PubMed ID: 17070012 [TBL] [Abstract][Full Text] [Related]
17. Contourlet-based mammography mass classification using the SVM family. Moayedi F; Azimifar Z; Boostani R; Katebi S Comput Biol Med; 2010 Apr; 40(4):373-83. PubMed ID: 20181330 [TBL] [Abstract][Full Text] [Related]
18. Decision support system for breast cancer detection using mammograms. Ganesan K; Acharya RU; Chua CK; Min LC; Mathew B; Thomas AK Proc Inst Mech Eng H; 2013 Jul; 227(7):721-32. PubMed ID: 23636749 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided mass detection in mammography: false positive reduction via gray-scale invariant ranklet texture features. Masotti M; Lanconelli N; Campanini R Med Phys; 2009 Feb; 36(2):311-6. PubMed ID: 19291970 [TBL] [Abstract][Full Text] [Related]
20. Fatty and fibroglandular tissue volumes in the breasts of women 20-83 years old: comparison of X-ray mammography and computer-assisted MR imaging. Lee NA; Rusinek H; Weinreb J; Chandra R; Toth H; Singer C; Newstead G AJR Am J Roentgenol; 1997 Feb; 168(2):501-6. PubMed ID: 9016235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]