These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7565348)

  • 1. Effects of undersampling on the proper interpretation of modulation transfer function, noise power spectra, and noise equivalent quanta of digital imaging systems.
    Dobbins JT
    Med Phys; 1995 Feb; 22(2):171-81. PubMed ID: 7565348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapy imaging: a signal-to-noise analysis of metal plate/film detectors.
    Munro P; Rawlinson JA; Fenster A
    Med Phys; 1987; 14(6):975-84. PubMed ID: 3696084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental relationship between the noise properties of grating-based differential phase contrast CT and absorption CT: theoretical framework using a cascaded system model and experimental validation.
    Li K; Bevins N; Zambelli J; Chen GH
    Med Phys; 2013 Feb; 40(2):021908. PubMed ID: 23387756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method of measuring NEQ as a quality control metric for digital mammography.
    Bloomquist AK; Mainprize JG; Mawdsley GE; Yaffe MJ
    Med Phys; 2014 Mar; 41(3):031905. PubMed ID: 24593723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise power spectra of images from digital mammography detectors.
    Williams MB; Mangiafico PA; Simoni PU
    Med Phys; 1999 Jul; 26(7):1279-93. PubMed ID: 10435530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical evaluation of a system for direct digital intra-oral radiography based on a charge-coupled device.
    Yoshiura K; Stamatakis HC; Welander U; McDavid WD; Shi XQ; Ban S; Kawazu T; Tatsumi M; Kanda S
    Dentomaxillofac Radiol; 1999 Sep; 28(5):277-83. PubMed ID: 10490745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of basic imaging properties in digital radiography. 6. MTFs of II-TV digital imaging systems.
    Fujita H; Doi K; Giger ML
    Med Phys; 1985; 12(6):713-20. PubMed ID: 4079861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cascaded systems analysis of noise reduction algorithms in dual-energy imaging.
    Richard S; Siewerdsen JH
    Med Phys; 2008 Feb; 35(2):586-601. PubMed ID: 18383680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital x-ray imaging using amorphous selenium: reduction of aliasing.
    Ji WG; Zhao W; Rowlands JA
    Med Phys; 1998 Nov; 25(11):2148-62. PubMed ID: 9829239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparisons of physical imaging properties among three kinds of imaging plates used in photostimulable phosphor systems for dental radiography.
    Nishikawa K; Ooguro T; Kuroyanagi K
    Bull Tokyo Dent Coll; 2002 Feb; 43(1):23-30. PubMed ID: 12013822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental comparison of detector performance for computed radiography systems.
    Samei E; Flynn MJ
    Med Phys; 2002 Apr; 29(4):447-59. PubMed ID: 11991117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical properties of a photostimulable phosphor system for intra-oral radiography.
    Stamatakis HC; Welander U; McDavid WD
    Dentomaxillofac Radiol; 2000 Jan; 29(1):28-34. PubMed ID: 10654033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The imaging performance of a storage phosphor system for dental radiography.
    Brettle DS; Workman A; Ellwood RP; Launders JH; Horner K; Davies RM
    Br J Radiol; 1996 Mar; 69(819):256-61. PubMed ID: 8800870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical imaging performance of a compact computed radiography acquisition device.
    Kengyelics SM; Launders JH; Cowen AR
    Med Phys; 1998 Mar; 25(3):354-60. PubMed ID: 9547503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of noise sources for two generations of computed radiography systems using powder and crystalline photostimulable phosphors.
    Mackenzie A; Honey ID
    Med Phys; 2007 Aug; 34(8):3345-57. PubMed ID: 17879798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency.
    Zhao W; Rowlands JA
    Med Phys; 1997 Dec; 24(12):1819-33. PubMed ID: 9434965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems.
    Cunningham IA; Westmore MS; Fenster A
    Med Phys; 1994 Mar; 21(3):417-27. PubMed ID: 8208217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the performance of digital mammographic X-ray equipment: determination of noise equivalent quanta (NEQQC) and detective quantum efficiency (DQEQC) compared with the automated analysis of CDMAM test images with CDCOM and CDIC programs.
    Loos C; Buhr H; Blendl C
    Rofo; 2013 Jul; 185(7):635-43. PubMed ID: 23801376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal and noise in modulation transfer function determinations using the slit, wire, and edge techniques.
    Cunningham IA; Reid BK
    Med Phys; 1992; 19(4):1037-44. PubMed ID: 1518465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Canon's flat-panel detector].
    Matsumoto M; Sumida I; Ideguchi T; Kawaji Y; Himuro K
    Igaku Butsuri; 2002; 22(4):232-45. PubMed ID: 12766269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.