These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 7565358)

  • 21. Joint sparsity-driven non-iterative simultaneous reconstruction of absorption and scattering in diffuse optical tomography.
    Lee O; Ye JC
    Opt Express; 2013 Nov; 21(22):26589-604. PubMed ID: 24216880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data.
    Li X; Jiang H
    Phys Med Biol; 2013 Feb; 58(4):999-1011. PubMed ID: 23339968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations.
    Jiang H
    Appl Opt; 1998 Aug; 37(22):5337-43. PubMed ID: 18286015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneous Subsurface Scattering Using the Finite Element Method.
    Arbree A; Walter B; Bala K
    IEEE Trans Vis Comput Graph; 2011 Jul; 17(7):956-69. PubMed ID: 20855913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction.
    Pogue BW; Geimer S; McBride TO; Jiang S; Osterberg UL; Paulsen KD
    Appl Opt; 2001 Feb; 40(4):588-600. PubMed ID: 18357035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data.
    Jiang H; Paulsen KD; Osterberg UL; Pogue BW; Patterson MS
    Opt Lett; 1995 Oct; 20(20):2128-30. PubMed ID: 19862273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase-contrast imaging of tissue using near-infrared diffusing light.
    Jiang H; Xu Y
    Med Phys; 2003 Jun; 30(6):1048-51. PubMed ID: 12852528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The finite element method for the propagation of light in scattering media: boundary and source conditions.
    Schweiger M; Arridge SR; Hiraoka M; Delpy DT
    Med Phys; 1995 Nov; 22(11 Pt 1):1779-92. PubMed ID: 8587533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multipixel techniques for frequency-domain photon migration imaging.
    Reynolds JS; Troy TL; Sevick-Muraca EM
    Biotechnol Prog; 1997; 13(5):669-80. PubMed ID: 9336987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer.
    Klose AD; Hielscher AH
    Med Phys; 1999 Aug; 26(8):1698-707. PubMed ID: 10501069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam.
    Wang A; Lu R; Xie L
    Appl Opt; 2016 Jan; 55(1):95-103. PubMed ID: 26835627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diffuse photon propagation in multilayered geometries.
    Sikora J; Zacharopoulos A; Douiri A; Schweiger M; Horesh L; Arridge SR; Ripoll J
    Phys Med Biol; 2006 Feb; 51(3):497-516. PubMed ID: 16424578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media.
    Roy R; Godavarty A; Sevick-Muraca EM
    IEEE Trans Med Imaging; 2003 Jul; 22(7):824-36. PubMed ID: 12906236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional frequency-domain optical anisotropy imaging of biological tissues with near-infrared light.
    Addoum A; Contassot-Vivier S; Asllanaj F
    Med Phys; 2019 Sep; 46(9):4057-4069. PubMed ID: 31152608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of the hyperspectral imaging-based spatially-resolved system for measuring the optical properties of biological materials.
    Cen H; Lu R
    Opt Express; 2010 Aug; 18(16):17412-32. PubMed ID: 20721128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography.
    Kolehmainen V; Arridge SR; Vauhkonen M; Kaipio JP
    Phys Med Biol; 2000 Nov; 45(11):3267-83. PubMed ID: 11098903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gradient-Based Quantitative Image Reconstruction in Ultrasound-Modulated Optical Tomography: First Harmonic Measurement Type in a Linearised Diffusion Formulation.
    Powell S; Arridge SR; Leung TS
    IEEE Trans Med Imaging; 2016 Feb; 35(2):456-67. PubMed ID: 26390449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A radiative transfer equation-based image-reconstruction method incorporating boundary conditions for diffuse optical imaging.
    Jha AK; Zhu Y; Wong DF; Rahmim A
    Proc SPIE Int Soc Opt Eng; 2017 Feb; 10137():. PubMed ID: 28736472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gauss-Newton method for image reconstruction in diffuse optical tomography.
    Schweiger M; Arridge SR; Nissilä I
    Phys Med Biol; 2005 May; 50(10):2365-86. PubMed ID: 15876673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo breast imaging with diffuse optical tomography based on higher-order diffusion equations.
    Xu Y; Gu X; Fajardo LL; Jiang H
    Appl Opt; 2003 Jun; 42(16):3163-9. PubMed ID: 12790467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.