BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 7565794)

  • 21. Exon size affects competition between splicing and cleavage-polyadenylation in the immunoglobulin mu gene.
    Peterson ML; Bryman MB; Peiter M; Cowan C
    Mol Cell Biol; 1994 Jan; 14(1):77-86. PubMed ID: 7903422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An intron enhancer recognized by splicing factors activates polyadenylation.
    Lou H; Gagel RF; Berget SM
    Genes Dev; 1996 Jan; 10(2):208-19. PubMed ID: 8566754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A human polyadenylation factor is a G protein beta-subunit homologue.
    Takagaki Y; Manley JL
    J Biol Chem; 1992 Nov; 267(33):23471-4. PubMed ID: 1358884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs.
    Yamagishi R; Tsusaka T; Mitsunaga H; Maehata T; Hoshino S
    Nucleic Acids Res; 2016 Apr; 44(6):2475-90. PubMed ID: 26926106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50.
    Kleiman FE; Manley JL
    Science; 1999 Sep; 285(5433):1576-9. PubMed ID: 10477523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulated immunoglobulin (Ig) RNA processing does not require specific cis-acting sequences: non-Ig RNA can be alternatively processed in B cells and plasma cells.
    Peterson ML
    Mol Cell Biol; 1994 Dec; 14(12):7891-8. PubMed ID: 7969129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell-specific expression of secreted versus membrane forms of immunoglobulin gamma 2b mRNA involves selective use of alternate polyadenylation sites.
    Milcarek C; Hall B
    Mol Cell Biol; 1985 Oct; 5(10):2514-20. PubMed ID: 3939252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The regulated production of mu m and mu s mRNA is dependent on the relative efficiencies of mu s poly(A) site usage and the c mu 4-to-M1 splice.
    Peterson ML; Perry RP
    Mol Cell Biol; 1989 Feb; 9(2):726-38. PubMed ID: 2565533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Balanced efficiencies of splicing and cleavage-polyadenylation are required for mu-s and mu-m mRNA regulation.
    Peterson ML
    Gene Expr; 1992; 2(4):319-27. PubMed ID: 1361868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternative processing of IgA pre-mRNA responds like IgM to alterations in the efficiency of the competing splice and cleavage-polyadenylation reactions.
    Seipelt RL; Peterson ML
    Mol Immunol; 1995 Mar; 32(4):277-85. PubMed ID: 7723773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation.
    Takagaki Y; Manley JL
    Mol Cell; 1998 Dec; 2(6):761-71. PubMed ID: 9885564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements.
    Bilger A; Fox CA; Wahle E; Wickens M
    Genes Dev; 1994 May; 8(9):1106-16. PubMed ID: 7926790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pta1, a component of yeast CF II, is required for both cleavage and poly(A) addition of mRNA precursor.
    Zhao J; Kessler M; Helmling S; O'Connor JP; Moore C
    Mol Cell Biol; 1999 Nov; 19(11):7733-40. PubMed ID: 10523662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A history of poly A sequences: from formation to factors to function.
    Edmonds M
    Prog Nucleic Acid Res Mol Biol; 2002; 71():285-389. PubMed ID: 12102557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection.
    Shell SA; Hesse C; Morris SM; Milcarek C
    J Biol Chem; 2005 Dec; 280(48):39950-61. PubMed ID: 16207706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a stem-loop structure important for polyadenylation at the murine IgM secretory poly(A) site.
    Phillips C; Kyriakopoulou CB; Virtanen A
    Nucleic Acids Res; 1999 Jan; 27(2):429-38. PubMed ID: 9862962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of human papillomavirus type 31 polyadenylation during the differentiation-dependent life cycle.
    Terhune SS; Milcarek C; Laimins LA
    J Virol; 1999 Sep; 73(9):7185-92. PubMed ID: 10438805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification of the Saccharomyces cerevisiae cleavage/polyadenylation factor I. Separation into two components that are required for both cleavage and polyadenylation of mRNA 3' ends.
    Kessler MM; Zhao J; Moore CL
    J Biol Chem; 1996 Oct; 271(43):27167-75. PubMed ID: 8900210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs.
    Takagaki Y; Manley JL; MacDonald CC; Wilusz J; Shenk T
    Genes Dev; 1990 Dec; 4(12A):2112-20. PubMed ID: 1980119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An RNA-binding protein specifically interacts with a functionally important domain of the downstream element of the simian virus 40 late polyadenylation signal.
    Qian ZW; Wilusz J
    Mol Cell Biol; 1991 Oct; 11(10):5312-20. PubMed ID: 1656229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.