These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7566064)

  • 1. Effect of proteolytic and glycolytic enzymes on a factor in Sorghum bicolor that induces mycelial growth in the smut fungus, Sporisorium reilianum.
    Bhaskaran S; Smith RH
    Mycopathologia; 1995 May; 130(2):95-101. PubMed ID: 7566064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host specificity in Sporisorium reilianum is determined by distinct mechanisms in maize and sorghum.
    Poloni A; Schirawski J
    Mol Plant Pathol; 2016 Jun; 17(5):741-54. PubMed ID: 26419898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome Analysis Reveals Contrasting Plant Responses of
    Poloni A; Garde R; Dittiger LD; Heidrich T; Müller C; Drechsler F; Zhao Y; Mazumdar T; Schirawski J
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root exudate impact on gene expression of Sporisorium reilianum.
    Sabbagh SK; Panjakeh N; Salary M
    Commun Agric Appl Biol Sci; 2009; 74(3):899-906. PubMed ID: 20222576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sporisorium reilianum possesses a pool of effector proteins that modulate virulence on maize.
    Ghareeb H; Zhao Y; Schirawski J
    Mol Plant Pathol; 2019 Jan; 20(1):124-136. PubMed ID: 30136754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis.
    Ghareeb H; Drechsler F; Löfke C; Teichmann T; Schirawski J
    Plant Physiol; 2015 Dec; 169(4):2789-804. PubMed ID: 26511912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum changes inflorescence branching at early stages in di- and monocot plants and induces fruit abortion in Arabidopsis thaliana.
    Drechsler F; Schwinges P; Schirawski J
    Plant Signal Behav; 2016 May; 11(5):e1167300. PubMed ID: 27058118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host specificity of Sporisorium reilianum is tightly linked to generation of the phytoalexin luteolinidin by Sorghum bicolor.
    Zuther K; Kahnt J; Utermark J; Imkampe J; Uhse S; Schirawski J
    Mol Plant Microbe Interact; 2012 Sep; 25(9):1230-7. PubMed ID: 22670753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Genome-Wide Association Study of Senegalese Sorghum Seedlings Responding to Pathotype 5 of
    Ahn E; Fall C; Prom LK; Magill C
    Plants (Basel); 2022 Nov; 11(21):. PubMed ID: 36365456
    [No Abstract]   [Full Text] [Related]  

  • 10. Plant Responses of Maize to Two
    Dittiger LD; Chaudhary S; Furch ACU; Mithöfer A; Schirawski J
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and Pathogenic Variability among Isolates of
    Prom LK; Ahn EJS; Perumal R; Isakeit TS; Odvody GN; Magill CW
    J Fungi (Basel); 2024 Jan; 10(1):. PubMed ID: 38248970
    [No Abstract]   [Full Text] [Related]  

  • 12. Implication of Gibberellins in Head Smut (Sporisorium reilianum) of Sorghum bicolor.
    Matheussen AM; Morgan PW; Frederiksen RA
    Plant Physiol; 1991 Jun; 96(2):537-44. PubMed ID: 16668219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical study of the extracellular aspartyl protease Eap1 from the phytopathogen fungus Sporisorium reilianum.
    Mandujano-González V; Arana-Cuenca A; Anducho-Reyes MÁ; Téllez-Jurado A; González-Becerra AE; Mercado-Flores Y
    Protein Expr Purif; 2013 Dec; 92(2):214-22. PubMed ID: 24128693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome Profiles of
    Zhang B; Zhang N; Zhang Q; Xu Q; Zhong T; Zhang K; Xu M
    J Fungi (Basel); 2021 Feb; 7(2):. PubMed ID: 33669631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Cytology and Expression of Resistance Genes in Maize Infected with
    Qi F; Zhang L; Dong X; Di H; Zhang J; Yao M; Dong L; Zeng X; Liu X; Wang Z; Zhou Y
    Plant Dis; 2019 Aug; 103(8):2100-2107. PubMed ID: 31215852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Floral transition in maize infected with Sporisorium reilianum disrupts compatibility with this biotrophic fungal pathogen.
    Zhang S; Gardiner J; Xiao Y; Zhao J; Wang F; Zheng Y
    Planta; 2013 May; 237(5):1251-66. PubMed ID: 23354455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerase Chain Reaction-Assisted Evaluation of the Efficacy of Seed-Treatment Prevention of
    Zhang Z; Fan J; Feng M; Qiu H; Hu A
    Front Microbiol; 2021; 12():745144. PubMed ID: 34777292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performing Infection Assays of Sporisorium reilianum f. sp. Zeae in Maize.
    Khan M; Djamei A
    Methods Mol Biol; 2022; 2494():291-298. PubMed ID: 35467215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Association Analysis Uncovers Genes Associated with Resistance to Head Smut Pathotype 5 in Senegalese Sorghum Accessions.
    Ahn E; Prom LK; Park S; Hu Z; Magill CW
    Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal proteins and other mechanisms in the control of sorghum stalk rot and grain mold.
    Waniska RD; Venkatesha RT; Chandrashekar A; Krishnaveni S; Bejosano FP; Jeoung J; Jayaraj J; Muthukrishnan S; Liang GH
    J Agric Food Chem; 2001 Oct; 49(10):4732-42. PubMed ID: 11600015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.