BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 7566746)

  • 1. Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: implications for information processing.
    Coenen AM
    Neurosci Biobehav Rev; 1995; 19(3):447-63. PubMed ID: 7566746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal phenomena associated with vigilance and consciousness: from cellular mechanisms to electroencephalographic patterns.
    Coenen AM
    Conscious Cogn; 1998 Mar; 7(1):42-53. PubMed ID: 9521831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems.
    Steriade M; Datta S; Paré D; Oakson G; Curró Dossi RC
    J Neurosci; 1990 Aug; 10(8):2541-59. PubMed ID: 2388079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burst and tonic response modes in thalamic neurons during sleep and wakefulness.
    Weyand TG; Boudreaux M; Guido W
    J Neurophysiol; 2001 Mar; 85(3):1107-18. PubMed ID: 11247981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling of auditory evoked potentials of human sleep-wake states.
    Coenen A
    Int J Psychophysiol; 2012 Jul; 85(1):37-40. PubMed ID: 22133997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of evoked potentials in sleep research.
    Colrain IM; Campbell KB
    Sleep Med Rev; 2007 Aug; 11(4):277-93. PubMed ID: 17628317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Evolution of visual evoked responses during various states of vigilance in Papio papio (author's transl)].
    Vuillon-Cacciuttolo G; Balzamo E; Naquet R
    Brain Res; 1975 Dec; 100(3):509-21. PubMed ID: 172195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (approximately 40 HZ) spike-bursts at approximately 1000 HZ during waking and rapid eye movement sleep.
    Steriade M; Curró Dossi R; Contreras D
    Neuroscience; 1993 Sep; 56(1):1-9. PubMed ID: 8232908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity.
    Steriade M; Amzica F
    J Neurophysiol; 1994 Nov; 72(5):2051-69. PubMed ID: 7884444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes.
    Burikov AA; Bereshpolova YuI
    Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans.
    Riedner BA; Vyazovskiy VV; Huber R; Massimini M; Esser S; Murphy M; Tononi G
    Sleep; 2007 Dec; 30(12):1643-57. PubMed ID: 18246974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states.
    Glenn LL; Steriade M
    J Neurosci; 1982 Oct; 2(10):1387-404. PubMed ID: 7119864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG slow waves and sleep spindles: windows on the sleeping brain.
    Dijk DJ
    Behav Brain Res; 1995; 69(1-2):109-16. PubMed ID: 7546301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillations of the spontaneous slow-wave sleep rhythm in lateral geniculate nucleus relay neurons of behaving cats.
    Fourment A; Hirsch JC; Marc ME
    Neuroscience; 1985 Apr; 14(4):1061-75. PubMed ID: 2987753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of thalamocortical slow-wave sleep oscillations and transitions to activated States.
    Bazhenov M; Timofeev I; Steriade M; Sejnowski TJ
    J Neurosci; 2002 Oct; 22(19):8691-704. PubMed ID: 12351744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurones.
    Domich L; Oakson G; Steriade M
    J Physiol; 1986 Oct; 379():429-49. PubMed ID: 3560000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.