These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 7567964)
1. Exploring the binding preferences/specificity in the active site of human cathepsin E. Rao-Naik C; Guruprasad K; Batley B; Rapundalo S; Hill J; Blundell T; Kay J; Dunn BM Proteins; 1995 Jun; 22(2):168-81. PubMed ID: 7567964 [TBL] [Abstract][Full Text] [Related]
2. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Scarborough PE; Guruprasad K; Topham C; Richo GR; Conner GE; Blundell TL; Dunn BM Protein Sci; 1993 Feb; 2(2):264-76. PubMed ID: 8443603 [TBL] [Abstract][Full Text] [Related]
3. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin. Galea CA; Dalrymple BP; Kuypers R; Blakeley R Protein Sci; 2000 Oct; 9(10):1947-59. PubMed ID: 11106168 [TBL] [Abstract][Full Text] [Related]
4. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat. Balbaa M; Cunningham A; Hofmann T Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428 [TBL] [Abstract][Full Text] [Related]
5. [p-Nitroanilides of amino acids and peptides and fluorescence peptide with inner fluorescence quenching as substrates for cathepsins H, B, D and high molecular weight aspartic peptidase in the brain]. Azarian AV; Agatian GL; Galoian AA Biokhimiia; 1987 Dec; 52(12):2033-7. PubMed ID: 3328984 [TBL] [Abstract][Full Text] [Related]
6. Substrate specificities and kinetic properties of proteinase A from the yeast Saccharomyces cerevisiae and the development of a novel substrate. Kondo H; Shibano Y; Amachi T; Cronin N; Oda K; Dunn BM J Biochem; 1998 Jul; 124(1):141-7. PubMed ID: 9644256 [TBL] [Abstract][Full Text] [Related]
7. Purification and characterization of recombinant human cathepsin E expressed in human kidney cell line 293. Cappiello MG; Wu Z; Scott BB; McGeehan GM; Harrison RK Protein Expr Purif; 2004 Sep; 37(1):53-60. PubMed ID: 15294281 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis. Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538 [TBL] [Abstract][Full Text] [Related]
9. Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries. Beyer BB; Johnson JV; Chung AY; Li T; Madabushi A; Agbandje-McKenna M; McKenna R; Dame JB; Dunn BM Biochemistry; 2005 Feb; 44(6):1768-79. PubMed ID: 15697202 [TBL] [Abstract][Full Text] [Related]
10. Characterization of kininogenase activity of an acidic proteinase isolated from human kidney. Gomes RA; Juliano L; Chagas JR; Hial V Can J Physiol Pharmacol; 1997 Jun; 75(6):757-61. PubMed ID: 9276160 [TBL] [Abstract][Full Text] [Related]
11. Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. Yasuda Y; Kageyama T; Akamine A; Shibata M; Kominami E; Uchiyama Y; Yamamoto K J Biochem; 1999 Jun; 125(6):1137-43. PubMed ID: 10348917 [TBL] [Abstract][Full Text] [Related]
12. Subsite preferences of pepstatin-insensitive carboxyl proteinases from bacteria. Narutaki S; Dunn BM; Oda K J Biochem; 1999 Jan; 125(1):75-81. PubMed ID: 9880800 [TBL] [Abstract][Full Text] [Related]
13. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2. Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484 [TBL] [Abstract][Full Text] [Related]
14. A new selective substrate for cathepsin E based on the cleavage site sequence of alpha2-macroglobulin. Yasuda Y; Kohmura K; Kadowaki T; Tsukuba T; Yamamoto K Biol Chem; 2005 Mar; 386(3):299-305. PubMed ID: 15843176 [TBL] [Abstract][Full Text] [Related]
15. Specificity determinants of human cathepsin s revealed by crystal structures of complexes. Pauly TA; Sulea T; Ammirati M; Sivaraman J; Danley DE; Griffor MC; Kamath AV; Wang IK; Laird ER; Seddon AP; Ménard R; Cygler M; Rath VL Biochemistry; 2003 Mar; 42(11):3203-13. PubMed ID: 12641451 [TBL] [Abstract][Full Text] [Related]
16. Kinetic and modeling studies of S3-S3' subsites of HIV proteinases. Tözsér J; Weber IT; Gustchina A; Bláha I; Copeland TD; Louis JM; Oroszlan S Biochemistry; 1992 May; 31(20):4793-800. PubMed ID: 1591240 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris. Bown DP; Wilkinson HS; Jongsma MA; Gatehouse JA Insect Biochem Mol Biol; 2004 Apr; 34(4):305-20. PubMed ID: 15041015 [TBL] [Abstract][Full Text] [Related]
18. Recombinant expression and enzymatic subsite characterization of plasmepsin 4 from the four Plasmodium species infecting man. Li T; Yowell CA; Beyer BB; Hung SH; Westling J; Lam MT; Dunn BM; Dame JB Mol Biochem Parasitol; 2004 May; 135(1):101-9. PubMed ID: 15287591 [TBL] [Abstract][Full Text] [Related]
19. Defining the substrate specificity of mouse cathepsin P. Puzer L; Barros NM; Oliveira V; Juliano MA; Lu G; Hassanein M; Juliano L; Mason RW; Carmona AK Arch Biochem Biophys; 2005 Mar; 435(1):190-6. PubMed ID: 15680921 [TBL] [Abstract][Full Text] [Related]
20. Substrate specificity of cerebral cathepsin D and high-Mr aspartic endopeptidase. Azaryan AV; Galoyan AA J Neurosci Res; 1988 Feb; 19(2):268-71. PubMed ID: 3285013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]