These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 7567965)
1. Comparison of the effects of hydrophobicity, amphiphilicity, and alpha-helicity on the activities of antimicrobial peptides. Pathak N; Salas-Auvert R; Ruche G; Janna MH; McCarthy D; Harrison RG Proteins; 1995 Jun; 22(2):182-6. PubMed ID: 7567965 [TBL] [Abstract][Full Text] [Related]
2. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Chou HT; Kuo TY; Chiang JC; Pei MJ; Yang WT; Yu HC; Lin SB; Chen WJ Int J Antimicrob Agents; 2008 Aug; 32(2):130-8. PubMed ID: 18586467 [TBL] [Abstract][Full Text] [Related]
3. Transmembrane segment peptides with double D-amino acid replacements: helicity, hydrophobicity, and antimicrobial activity. Maeda M; Melnyk RA; Partridge AW; Liu LP; Deber CM Biopolymers; 2003; 71(1):77-84. PubMed ID: 12712502 [TBL] [Abstract][Full Text] [Related]
4. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Wieprecht T; Dathe M; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M Biochemistry; 1997 May; 36(20):6124-32. PubMed ID: 9166783 [TBL] [Abstract][Full Text] [Related]
5. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
6. New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Cerovský V; Slaninová J; Fucík V; Hulacová H; Borovicková L; Jezek R; Bednárová L Peptides; 2008 Jun; 29(6):992-1003. PubMed ID: 18375018 [TBL] [Abstract][Full Text] [Related]
7. Sequence requirements and an optimization strategy for short antimicrobial peptides. Hilpert K; Elliott MR; Volkmer-Engert R; Henklein P; Donini O; Zhou Q; Winkler DF; Hancock RE Chem Biol; 2006 Oct; 13(10):1101-7. PubMed ID: 17052614 [TBL] [Abstract][Full Text] [Related]
8. The Magainins: sequence factors relevant to increased antimicrobial activity and decreased hemolytic activity. Cuervo JH; Rodriguez B; Houghten RA Pept Res; 1988; 1(2):81-6. PubMed ID: 2980783 [TBL] [Abstract][Full Text] [Related]
9. Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin-2. Pál T; Sonnevend A; Galadari S; Conlon JM Regul Pept; 2005 Jul; 129(1-3):85-91. PubMed ID: 15927702 [TBL] [Abstract][Full Text] [Related]
10. Analyses of dose-response curves to compare the antimicrobial activity of model cationic alpha-helical peptides highlights the necessity for a minimum of two activity parameters. Rautenbach M; Gerstner GD; Vlok NM; Kulenkampff J; Westerhoff HV Anal Biochem; 2006 Mar; 350(1):81-90. PubMed ID: 16434018 [TBL] [Abstract][Full Text] [Related]
11. Tuning the biological properties of amphipathic alpha-helical antimicrobial peptides: rational use of minimal amino acid substitutions. Zelezetsky I; Pag U; Sahl HG; Tossi A Peptides; 2005 Dec; 26(12):2368-76. PubMed ID: 15939509 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Wu M; Maier E; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(22):7235-42. PubMed ID: 10353835 [TBL] [Abstract][Full Text] [Related]
13. De novo antimicrobial peptides with low mammalian cell toxicity. Javadpour MM; Juban MM; Lo WC; Bishop SM; Alberty JB; Cowell SM; Becker CL; McLaughlin ML J Med Chem; 1996 Aug; 39(16):3107-13. PubMed ID: 8759631 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. Meng H; Kumar K J Am Chem Soc; 2007 Dec; 129(50):15615-22. PubMed ID: 18041836 [TBL] [Abstract][Full Text] [Related]
15. Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-containing antimicrobial peptides: a plausible mode of action. Avrahami D; Shai Y Biochemistry; 2003 Dec; 42(50):14946-56. PubMed ID: 14674771 [TBL] [Abstract][Full Text] [Related]
16. Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of alpha/beta-peptides. Schmitt MA; Weisblum B; Gellman SH J Am Chem Soc; 2007 Jan; 129(2):417-28. PubMed ID: 17212422 [TBL] [Abstract][Full Text] [Related]
17. Pseudin-2: an antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog. Olson L; Soto AM; Knoop FC; Conlon JM Biochem Biophys Res Commun; 2001 Nov; 288(4):1001-5. PubMed ID: 11689009 [TBL] [Abstract][Full Text] [Related]
18. Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Hirsh DJ; Hammer J; Maloy WL; Blazyk J; Schaefer J Biochemistry; 1996 Oct; 35(39):12733-41. PubMed ID: 8841117 [TBL] [Abstract][Full Text] [Related]
19. Membrane interactions of designed cationic antimicrobial peptides: the two thresholds. Glukhov E; Burrows LL; Deber CM Biopolymers; 2008 May; 89(5):360-71. PubMed ID: 18186149 [TBL] [Abstract][Full Text] [Related]
20. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7. Conlon JM; Galadari S; Raza H; Condamine E Chem Biol Drug Des; 2008 Jul; 72(1):58-64. PubMed ID: 18554256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]