These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7567991)

  • 1. Peptide inhibitors of peptidyltransferase alter the conformation of domains IV and V of large subunit rRNA: a model for nascent peptide control of translation.
    Harrod R; Lovett PS
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8650-4. PubMed ID: 7567991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of a pentapeptide inhibitor of peptidyltransferase that is essential for cat gene regulation by translation attenuation.
    Gu Z; Harrod R; Rogers EJ; Lovett PS
    J Bacteriol; 1994 Oct; 176(20):6238-44. PubMed ID: 7928994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible involvement of Escherichia coli 23S ribosomal RNA in peptide bond formation.
    Nitta I; Ueda T; Watanabe K
    RNA; 1998 Mar; 4(3):257-67. PubMed ID: 9510328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-peptidyl transferase leader peptides of attenuation-regulated chloramphenicol-resistance genes.
    Gu Z; Harrod R; Rogers EJ; Lovett PS
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5612-6. PubMed ID: 7515506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The path of the growing peptide chain through the 23S rRNA in the 50S ribosomal subunit; a comparative cross-linking study with three different peptide families.
    Choi KM; Brimacombe R
    Nucleic Acids Res; 1998 Feb; 26(4):887-95. PubMed ID: 9461444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leader peptides of inducible chloramphenicol resistance genes from gram-positive and gram-negative bacteria bind to yeast and Archaea large subunit rRNA.
    Harrod R; Lovett PS
    Nucleic Acids Res; 1997 May; 25(9):1720-6. PubMed ID: 9108153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit.
    Thompson J; Kim DF; O'Connor M; Lieberman KR; Bayfield MA; Gregory ST; Green R; Noller HF; Dahlberg AE
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9002-7. PubMed ID: 11470897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel.
    Long KS; Porse BT
    Nucleic Acids Res; 2003 Dec; 31(24):7208-15. PubMed ID: 14654696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of Escherichia coli ribosome.
    Burakovsky DE; Sergiev PV; Steblyanko MA; Konevega AL; Bogdanov AA; Dontsova OA
    FEBS Lett; 2011 Oct; 585(19):3073-8. PubMed ID: 21875584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosome regulation by the nascent peptide.
    Lovett PS; Rogers EJ
    Microbiol Rev; 1996 Jun; 60(2):366-85. PubMed ID: 8801438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the use of the antibiotic chloramphenicol to target polypeptide chain mimics to the ribosomal exit tunnel.
    Mamos P; Krokidis MG; Papadas A; Karahalios P; Starosta AL; Wilson DN; Kalpaxis DL; Dinos GP
    Biochimie; 2013 Sep; 95(9):1765-72. PubMed ID: 23770443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural basis of ribosome activity in peptide bond synthesis.
    Nissen P; Hansen J; Ban N; Moore PB; Steitz TA
    Science; 2000 Aug; 289(5481):920-30. PubMed ID: 10937990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interactions within 23S rRNA involving the peptidyltransferase center.
    Douthwaite S
    J Bacteriol; 1992 Feb; 174(4):1333-8. PubMed ID: 1531223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the path of the nascent peptide chain through the 23S RNA in the 50S ribosomal subunit.
    Stade K; Jünke N; Brimacombe R
    Nucleic Acids Res; 1995 Jul; 23(13):2371-80. PubMed ID: 7630714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.
    Poulsen SM; Kofoed C; Vester B
    J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination.
    Polacek N; Gomez MJ; Ito K; Xiong L; Nakamura Y; Mankin A
    Mol Cell; 2003 Jan; 11(1):103-12. PubMed ID: 12535525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a rRNA/chloramphenicol interaction site within the peptidyltransferase center of the 50 S subunit of the Escherichia coli ribosome.
    Marconi RT; Lodmell JS; Hill WE
    J Biol Chem; 1990 May; 265(14):7894-9. PubMed ID: 1692317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosomal intersubunit bridge B2a is involved in factor-dependent translation initiation and translational processivity.
    Kipper K; Hetényi C; Sild S; Remme J; Liiv A
    J Mol Biol; 2009 Jan; 385(2):405-22. PubMed ID: 19007789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional peptide encoded in the Escherichia coli 23S rRNA.
    Tenson T; DeBlasio A; Mankin A
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5641-6. PubMed ID: 8643630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.