These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 7568000)

  • 1. Prediction of protein folding class using global description of amino acid sequence.
    Dubchak I; Muchnik I; Holbrook SR; Kim SH
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8700-4. PubMed ID: 7568000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein folding class predictor for SCOP: approach based on global descriptors.
    Dubchak I; Muchnik I; Kim SH
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():104-7. PubMed ID: 9322023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of protein folding class from amino acid composition.
    Dubchak I; Holbrook SR; Kim SH
    Proteins; 1993 May; 16(1):79-91. PubMed ID: 8497486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting solvent accessibility: higher accuracy using Bayesian statistics and optimized residue substitution classes.
    Thompson MJ; Goldstein RA
    Proteins; 1996 May; 25(1):38-47. PubMed ID: 8727318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DEF data base of sequence based protein fold class predictions.
    Reczko M; Bohr H
    Nucleic Acids Res; 1994 Sep; 22(17):3616-9. PubMed ID: 7937069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-validation of protein structural class prediction using statistical clustering and neural networks.
    Metfessel BA; Saurugger PN; Connelly DP; Rich SS
    Protein Sci; 1993 Jul; 2(7):1171-82. PubMed ID: 8358300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two variations of neural network approach to the prediction of protein folding pattern.
    Dubchak I; Holbrook SR; Kim SH
    Proc Int Conf Intell Syst Mol Biol; 1993; 1():118-26. PubMed ID: 7584326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW; Eisenberg D
    J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of secondary structural content of proteins from their amino acid composition alone. I. New analytic vector decomposition methods.
    Eisenhaber F; Imperiale F; Argos P; Frömmel C
    Proteins; 1996 Jun; 25(2):157-68. PubMed ID: 8811732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural networks for secondary structure and structural class predictions.
    Chandonia JM; Karplus M
    Protein Sci; 1995 Feb; 4(2):275-85. PubMed ID: 7757016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swfoldrate: predicting protein folding rates from amino acid sequence with sliding window method.
    Cheng X; Xiao X; Wu ZC; Wang P; Lin WZ
    Proteins; 2013 Jan; 81(1):140-8. PubMed ID: 22933332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of secondary structural content of proteins from their amino acid composition alone. II. The paradox with secondary structural class.
    Eisenhaber F; Frömmel C; Argos P
    Proteins; 1996 Jun; 25(2):169-79. PubMed ID: 8811733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of protein structure classes with flexible neural tree.
    Bao W; Chen Y; Wang D
    Biomed Mater Eng; 2014; 24(6):3797-806. PubMed ID: 25227096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FORESST: fold recognition from secondary structure predictions of proteins.
    Di Francesco V; Munson PJ; Garnier J
    Bioinformatics; 1999 Feb; 15(2):131-40. PubMed ID: 10089198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):682-92. PubMed ID: 8182743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of beta-turns in proteins from multiple alignment using neural network.
    Kaur H; Raghava GP
    Protein Sci; 2003 Mar; 12(3):627-34. PubMed ID: 12592033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hunting for "key residues" in the modeling of globular protein folding: an artificial neural network-based approach.
    Sacile R; Ruggiero C
    IEEE Trans Nanobioscience; 2002 Jun; 1(2):85-91. PubMed ID: 16689212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A statistical model for predicting protein folding rates from amino acid sequence with structural class information.
    Gromiha MM
    J Chem Inf Model; 2005; 45(2):494-501. PubMed ID: 15807515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of a protein fold in the context of the Structural Classification of Proteins (SCOP) classification.
    Dubchak I; Muchnik I; Mayor C; Dralyuk I; Kim SH
    Proteins; 1999 Jun; 35(4):401-7. PubMed ID: 10382667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.