These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7568204)

  • 1. Neighboring base composition and transversion/transition bias in a comparison of rice and maize chloroplast noncoding regions.
    Morton BR
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9717-21. PubMed ID: 7568204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neighboring base composition is strongly correlated with base substitution bias in a region of the chloroplast genome.
    Morton BR; Clegg MT
    J Mol Evol; 1995 Nov; 41(5):597-603. PubMed ID: 7490774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of specific neighboring bases on substitution bias in noncoding regions of the plant chloroplast genome.
    Morton BR; Oberholzer VM; Clegg MT
    J Mol Evol; 1997 Sep; 45(3):227-31. PubMed ID: 9302315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing.
    Maier RM; Neckermann K; Igloi GL; Kössel H
    J Mol Biol; 1995 Sep; 251(5):614-28. PubMed ID: 7666415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyphyletism of Celastrales deduced from a chloroplast noncoding DNA region.
    Savolainen V; Spichiger R; Manen JF
    Mol Phylogenet Evol; 1997 Apr; 7(2):145-57. PubMed ID: 9126556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA.
    Ogihara Y; Isono K; Kojima T; Endo A; Hanaoka M; Shiina T; Terachi T; Utsugi S; Murata M; Mori N; Takumi S; Ikeo K; Gojobori T; Murai R; Murai K; Matsuoka Y; Ohnishi Y; Tajiri H; Tsunewaki K
    Mol Genet Genomics; 2002 Jan; 266(5):740-6. PubMed ID: 11810247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of context-dependent mutations in generating compositional and codon usage bias in grass chloroplast DNA.
    Morton BR
    J Mol Evol; 2003 May; 56(5):616-29. PubMed ID: 12698298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice.
    Nakazono M; Hirai A
    Mol Gen Genet; 1993 Jan; 236(2-3):341-6. PubMed ID: 8437578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in mutation dynamics across the maize genome as a function of regional and flanking base composition.
    Morton BR; Bi IV; McMullen MD; Gaut BS
    Genetics; 2006 Jan; 172(1):569-77. PubMed ID: 16219784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted analysis of orthologous phytochrome A regions of the sorghum, maize, and rice genomes using comparative gene-island sequencing.
    Morishige DT; Childs KL; Moore LD; Mullet JE
    Plant Physiol; 2002 Dec; 130(4):1614-25. PubMed ID: 12481045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of adjacent nucleotides on the pattern of nucleotide substitution in mitochondrial introns of angiosperms.
    Yang YW; Chen Y; Li WH
    J Mol Evol; 2002 Jul; 55(1):111-5. PubMed ID: 12165848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of chloroplast DNA microsatellites from Saccharum spp and related species.
    Melotto-Passarin DM; Tambarussi EV; Dressano K; De Martin VF; Carrer H
    Genet Mol Res; 2011 Sep; 10(3):2024-33. PubMed ID: 21948764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitution rate heterogeneity across hexanucleotide contexts in noncoding chloroplast DNA.
    Morton BR
    G3 (Bethesda); 2022 Jul; 12(8):. PubMed ID: 35699494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of rice chloroplast genomes.
    Tang J; Xia H; Cao M; Zhang X; Zeng W; Hu S; Tong W; Wang J; Wang J; Yu J; Yang H; Zhu L
    Plant Physiol; 2004 May; 135(1):412-20. PubMed ID: 15122023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern and rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane, maize and rice.
    Yamane K; Yano K; Kawahara T
    DNA Res; 2006 Oct; 13(5):197-204. PubMed ID: 17110395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloroplast DNA base substitutions: an experimental assessment.
    Guhamajumdar M; Sears BB
    Mol Genet Genomics; 2005 Apr; 273(2):177-83. PubMed ID: 15744500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility and distribution of conserved noncoding sequences in the grasses.
    Kaplinsky NJ; Braun DM; Penterman J; Goff SA; Freeling M
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6147-51. PubMed ID: 11972021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA.
    Yang YW; Tai PY; Chen Y; Li WH
    Mol Phylogenet Evol; 2002 May; 23(2):268-75. PubMed ID: 12069556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico analysis of microsatellites in organellar genomes of major cereals for understanding their phylogenetic relationships.
    Rajendrakumar P; Biswal AK; Balachandran SM; Sundaram RM
    In Silico Biol; 2008; 8(2):87-104. PubMed ID: 18928198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)-trnF (GAA) regions.
    Bakker FT; Culham A; Gomez-Martinez R; Carvalho J; Compton J; Dawtrey R; Gibby M
    Mol Biol Evol; 2000 Aug; 17(8):1146-55. PubMed ID: 10991703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.