These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7568382)

  • 1. The influence of glucose concentration upon the transport of light in tissue-simulating phantoms.
    Kohl M; Essenpreis M; Cope M
    Phys Med Biol; 1995 Jul; 40(7):1267-87. PubMed ID: 7568382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of glucose concentration on light scattering in tissue-simulating phantoms.
    Kohl M; Cope M; Essenpreis M; Böcker D
    Opt Lett; 1994 Dec; 19(24):2170-2. PubMed ID: 19855776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of complex refractive index of polydisperse particulate systems from multiple-scattered ultraviolet-visible-near-infrared measurements.
    Velazco-Roa MA; Thennadil SN
    Appl Opt; 2007 Jun; 46(18):3730-5. PubMed ID: 17538669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Study of UV Scattering Polarization Properties of Spherical Particles of Haze.
    Zhao TF; Wang C; Ke XZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Mar; 37(3):665-71. PubMed ID: 30148336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices.
    Bhandari A; Hamre B; Frette Ø; Stamnes K; Stamnes JJ
    Opt Express; 2011 Jul; 19(15):14549-67. PubMed ID: 21934819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography.
    Sukowski U; Schubert F; Grosenick D; Rinneberg H
    Phys Med Biol; 1996 Sep; 41(9):1823-44. PubMed ID: 8884914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial assessment of a simple system for frequency domain diffuse optical tomography.
    Pogue BW; Patterson MS; Jiang H; Paulsen KD
    Phys Med Biol; 1995 Oct; 40(10):1709-29. PubMed ID: 8532750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental verification of the effect of refractive index mismatch on the light fluence in a turbid medium.
    Farrell TJ; Patterson MS
    J Biomed Opt; 2001 Oct; 6(4):468-73. PubMed ID: 11728207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo.
    Farrell TJ; Patterson MS; Wilson B
    Med Phys; 1992; 19(4):879-88. PubMed ID: 1518476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of India ink in tissue-simulating phantoms.
    Di Ninni P; Martelli F; Zaccanti G
    Opt Express; 2010 Dec; 18(26):26854-65. PubMed ID: 21196962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-cost tissue simulating phantoms with adjustable wavelength-dependent scattering properties in the visible and infrared ranges.
    Saager RB; Quach A; Rowland RA; Baldado ML; Durkin AJ
    J Biomed Opt; 2016 Jun; 21(6):67001. PubMed ID: 27292135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes.
    Hull EL; Nichols MG; Foster TH
    Phys Med Biol; 1998 Nov; 43(11):3381-404. PubMed ID: 9832022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Merging Mie solutions and the radiative transport equation to measure optical properties of scattering particles in optical phantoms.
    Baez-Castillo L; Ortiz-Rascón E; Bruce NC; Garduño-Mejía J; Carrillo-Torres RC; Álvarez-Ramos ME
    Appl Opt; 2020 Nov; 59(33):10591-10598. PubMed ID: 33361994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation of light transport through scattering bodies with non-scattering regions.
    Firbank M; Arridge SR; Schweiger M; Delpy DT
    Phys Med Biol; 1996 Apr; 41(4):767-83. PubMed ID: 8730669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial frequency domain imaging using an analytical model for separation of surface and volume scattering.
    Nothelfer S; Bergmann F; Liemert A; Reitzle D; Kienle A
    J Biomed Opt; 2018 Sep; 24(7):1-10. PubMed ID: 30218505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of ultrasound modulation of near infrared light on the quantification of scattering coefficient.
    Singh MS; Yalavarthy PK; Vasu RM; Rajan K
    Med Phys; 2010 Jul; 37(7):3744-51. PubMed ID: 20831082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband Optical Properties of Milk.
    Stocker S; Foschum F; Krauter P; Bergmann F; Hohmann A; Scalfi Happ C; Kienle A
    Appl Spectrosc; 2017 May; 71(5):951-962. PubMed ID: 27770046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms.
    Pogue BW; Paulsen KD; Abele C; Kaufman H
    J Biomed Opt; 2000 Apr; 5(2):185-93. PubMed ID: 10938782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration of isotropic light dosimetry probes based on scattering bulbs in clear media.
    Marijnissen JP; Star WM
    Phys Med Biol; 1996 Jul; 41(7):1191-208. PubMed ID: 8822784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.