BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 7568410)

  • 1. Spectroscopic and microscopic characteristics of human skin autofluorescence emission.
    Zeng H; MacAulay C; McLean DI; Palcic B
    Photochem Photobiol; 1995 Jun; 61(6):639-45. PubMed ID: 7568410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    J Photochem Photobiol B; 2011 Dec; 105(3):183-9. PubMed ID: 21945055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation.
    Zeng H; MacAulay C; McLean DI; Palcic B
    J Photochem Photobiol B; 1997 Apr; 38(2-3):234-40. PubMed ID: 9203387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin.
    Masters BR; So PT; Gratton E
    Biophys J; 1997 Jun; 72(6):2405-12. PubMed ID: 9168018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state directional diffuse reflectance and fluorescence of human skin.
    Katika KM; Pilon L
    Appl Opt; 2006 Jun; 45(17):4174-83. PubMed ID: 16761061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue.
    Huang Z; Zheng W; Xie S; Chen R; Zeng H; McLean DI; Lui H
    Int J Oncol; 2004 Jan; 24(1):59-63. PubMed ID: 14654941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral characteristics of autofluorescence and second harmonic generation from ex vivo human skin induced by femtosecond laser and visible lasers.
    Chen J; Zhuo S; Luo T; Jiang X; Zhao J
    Scanning; 2006; 28(6):319-26. PubMed ID: 17181133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.
    Diamond KR; Farrell TJ; Patterson MS
    Phys Med Biol; 2003 Dec; 48(24):4135-49. PubMed ID: 14727757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gender differences in the fluorescence of human skin in young healthy adults.
    Morvová M; Jeczko P; Šikurová L
    Skin Res Technol; 2018 Nov; 24(4):599-605. PubMed ID: 29700858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise analysis of the autofluorescence characteristics of rat colon under UVA and violet light excitation.
    Nakano K; Harada Y; Yamaoka Y; Miyawaki K; Imaizumi K; Takaoka H; Nakaoka M; Wakabayashi N; Yoshikawa T; Takamatsu T
    Curr Pharm Biotechnol; 2013; 14(2):172-9. PubMed ID: 22356112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic potential of laser-induced autofluorescence emission in brain tissue.
    Chung YG; Schwartz JA; Gardner CM; Sawaya RE; Jacques SL
    J Korean Med Sci; 1997 Apr; 12(2):135-42. PubMed ID: 9170019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation.
    Schwille P; Haupts U; Maiti S; Webb WW
    Biophys J; 1999 Oct; 77(4):2251-65. PubMed ID: 10512844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamics of laser-induced changes in human skin autofluorescence--experimental measurements and theoretical modeling.
    Zeng H; MacAulay C; McLean DI; Palcic B; Lui H
    Photochem Photobiol; 1998 Aug; 68(2):227-36. PubMed ID: 9723216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time assessment of in vivo renal ischemia using laser autofluorescence imaging.
    Fitzgerald JT; Michalopoulou A; Pivetti CD; Raman RN; Troppmann C; Demos SG
    J Biomed Opt; 2005; 10(4):44018. PubMed ID: 16178651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors.
    Zheng W; Lau W; Cheng C; Soo KC; Olivo M
    Int J Cancer; 2003 Apr; 104(4):477-81. PubMed ID: 12584746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific variations in cutaneous autofluorescence revealed by excitation-emission matrix spectroscopy.
    Zhao J; Kalia S; Zeng H; Lui H
    Photodermatol Photoimmunol Photomed; 2019 Nov; 35(6):400-407. PubMed ID: 30739347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Psoriatic plaques exhibit red autofluorescence that is due to protoporphyrin IX.
    Bissonnette R; Zeng H; McLean DI; Schreiber WE; Roscoe DL; Lui H
    J Invest Dermatol; 1998 Oct; 111(4):586-91. PubMed ID: 9764837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging.
    Bestvater F; Spiess E; Stobrawa G; Hacker M; Feurer T; Porwol T; Berchner-Pfannschmidt U; Wotzlaw C; Acker H
    J Microsc; 2002 Nov; 208(Pt 2):108-15. PubMed ID: 12423261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms.
    Neu TR; Kuhlicke U; Lawrence JR
    Appl Environ Microbiol; 2002 Feb; 68(2):901-9. PubMed ID: 11823234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-induced autofluorescence spectroscopy of dental caries.
    König K; Flemming G; Hibst R
    Cell Mol Biol (Noisy-le-grand); 1998 Dec; 44(8):1293-300. PubMed ID: 9874516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.