BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 7569414)

  • 21. Renal apoptosis and clusterin following ureteral obstruction: the role of maturation.
    Chevalier RL; Chung KH; Smith CD; Ficenec M; Gomez RA
    J Urol; 1996 Oct; 156(4):1474-9. PubMed ID: 8808911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chronic unilateral ureteral obstruction in the neonatal mouse delays maturation of both kidneys and leads to late formation of atubular glomeruli.
    Forbes MS; Thornhill BA; Galarreta CI; Minor JJ; Gordon KA; Chevalier RL
    Am J Physiol Renal Physiol; 2013 Dec; 305(12):F1736-46. PubMed ID: 24107422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Counterbalance in functional adaptation to ureteral obstruction during development.
    Chevalier RL
    Pediatr Nephrol; 1990 Jul; 4(4):442-4. PubMed ID: 2206915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potassium channels: the 'master switch' of renal fibrosis?
    Menè P; Pirozzi N
    Nephrol Dial Transplant; 2010 Feb; 25(2):353-5. PubMed ID: 19945954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Renal apoptosis parallels ceramide content after prolonged ureteral obstruction in the neonatal rat.
    Malik RK; Thornhill BA; Chang AY; Kiley SC; Chevalier RL
    Am J Physiol Renal Physiol; 2001 Jul; 281(1):F56-61. PubMed ID: 11399646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compensatory renal growth due to neonatal ureteral obstruction: implications for clinical studies.
    Yoo KH; Thornhill BA; Forbes MS; Chevalier RL
    Pediatr Nephrol; 2006 Mar; 21(3):368-75. PubMed ID: 16382318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renal developmental genes are differentially regulated after unilateral ureteral obstruction in neonatal and adult mice.
    Kubik MJ; Wyczanska M; Gasparitsch M; Keller U; Weber S; Schaefer F; Lange-Sperandio B
    Sci Rep; 2020 Nov; 10(1):19302. PubMed ID: 33168884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Obstructive nephropathy: insights from genetically engineered animals.
    Bascands JL; Schanstra JP
    Kidney Int; 2005 Sep; 68(3):925-37. PubMed ID: 16105023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neonatal ureteral obstruction stimulates recruitment of renin-secreting renal cortical cells.
    Norwood VF; Carey RM; Geary KM; Jose PA; Gomez RA; Chevalier RL
    Kidney Int; 1994 May; 45(5):1333-9. PubMed ID: 8072245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fetal partial urethral obstruction causes renal fibrosis and is associated with proteolytic imbalance.
    Gobet R; Bleakley J; Cisek L; Kaefer M; Moses MA; Fernandez CA; Peters CA
    J Urol; 1999 Sep; 162(3 Pt 1):854-60. PubMed ID: 10458395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The pathogenesis of renal dysplasia. III. Complete and incomplete urinary obstruction.
    Schwarz RD; Stephens FD; Cussen LJ
    Invest Urol; 1981 Sep; 19(2):101-3. PubMed ID: 7196894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autophagy is a component of epithelial cell fate in obstructive uropathy.
    Li L; Zepeda-Orozco D; Black R; Lin F
    Am J Pathol; 2010 Apr; 176(4):1767-78. PubMed ID: 20150430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The long-term renal effects of short periods of unilateral ureteral obstruction.
    Hammad FT
    Int J Physiol Pathophysiol Pharmacol; 2022; 14(2):60-72. PubMed ID: 35619661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pathophysiology of urethral obstruction.
    Bartges JW; Finco DR; Polzin DJ; Osborne CA; Barsanti JA; Brown SA
    Vet Clin North Am Small Anim Pract; 1996 Mar; 26(2):255-64. PubMed ID: 8711861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The therapeutic approaches of renal recovery after relief of the unilateral ureteral obstruction: A comprehensive review.
    Kaeidi A; Maleki M; Shamsizadeh A; Fatemi I; Hakimizadeh E; Hassanshahi J
    Iran J Basic Med Sci; 2020 Nov; 23(11):1367-1373. PubMed ID: 33235692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wt-1 Expression Linked to Nitric Oxide Availability during Neonatal Obstructive Nephropathy.
    Mazzei L; Manucha W
    Adv Urol; 2013; 2013():401750. PubMed ID: 24288526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient renal clearance of DNA tetrahedron nanoparticles enables quantitative evaluation of kidney function.
    Jiang D; Im HJ; Boleyn ME; England CG; Ni D; Kang L; Engle JW; Huang P; Lan X; Cai W
    Nano Res; 2019 Mar; 12(3):637-642. PubMed ID: 32055285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RENAL COUNTERBALANCE.
    Hinman F
    Cal West Med; 1926 Mar; 24(3):333-5. PubMed ID: 18739911
    [No Abstract]   [Full Text] [Related]  

  • 39. Modeling dynamic radial contrast enhanced MRI with linear time invariant systems for motion correction in quantitative assessment of kidney function.
    Coll-Font J; Afacan O; Chow JS; Lee RS; Warfield SK; Kurugol S
    Med Image Anal; 2021 Jan; 67():101880. PubMed ID: 33147561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bulk motion-compensated DCE-MRI for functional imaging of kidneys in newborns.
    Coll-Font J; Afacan O; Chow JS; Lee RS; Stemmer A; Warfield SK; Kurugol S
    J Magn Reson Imaging; 2020 Jul; 52(1):207-216. PubMed ID: 31837071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.