These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 7569824)
21. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint]. Stinus H Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622 [TBL] [Abstract][Full Text] [Related]
22. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control. Datta D; Heller B; Howitt J Clin Rehabil; 2005 Jun; 19(4):398-403. PubMed ID: 15929508 [TBL] [Abstract][Full Text] [Related]
23. Energy expenditure and cardiac response in above-knee amputees while using prostheses with open and locked knee mechanisms. Isakov E; Susak Z; Becker E Scand J Rehabil Med Suppl; 1985; 12():108-11. PubMed ID: 3868034 [TBL] [Abstract][Full Text] [Related]
24. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945 [TBL] [Abstract][Full Text] [Related]
25. 3D intersegmental knee loading in below-knee amputees across steady-state walking speeds. Fey NP; Neptune RR Clin Biomech (Bristol); 2012 May; 27(4):409-14. PubMed ID: 22138437 [TBL] [Abstract][Full Text] [Related]
27. Assessment of aerobic capacity and walking economy of unilateral transfemoral amputees. Gjovaag T; Starholm IM; Mirtaheri P; Hegge FW; Skjetne K Prosthet Orthot Int; 2014 Apr; 38(2):140-7. PubMed ID: 23798044 [TBL] [Abstract][Full Text] [Related]
28. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. Torburn L; Powers CM; Guiterrez R; Perry J J Rehabil Res Dev; 1995 May; 32(2):111-9. PubMed ID: 7562650 [TBL] [Abstract][Full Text] [Related]
29. Physical function, gait, and dynamic balance of transfemoral amputees using two mechanical passive prosthetic knee devices. Lythgo N; Marmaras B; Connor H Arch Phys Med Rehabil; 2010 Oct; 91(10):1565-70. PubMed ID: 20875515 [TBL] [Abstract][Full Text] [Related]
30. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial. Cao W; Yu H; Zhao W; Meng Q; Chen W Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741 [TBL] [Abstract][Full Text] [Related]
33. Design and quantitative evaluation of a stance-phase controlled prosthetic knee joint for children. Andrysek J; Naumann S; Cleghorn WL IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):437-43. PubMed ID: 16425824 [TBL] [Abstract][Full Text] [Related]
34. The energy cost for the step-to-step transition in amputee walking. Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343 [TBL] [Abstract][Full Text] [Related]
36. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J; Pros D Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907 [TBL] [Abstract][Full Text] [Related]
37. The effect of direct measurement versus cadaver estimates of anthropometry in the calculation of joint moments during above-knee prosthetic gait in pediatrics. Goldberg EJ; Requejo PS; Fowler EG J Biomech; 2008; 41(3):695-700. PubMed ID: 18031751 [TBL] [Abstract][Full Text] [Related]
38. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation. Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259 [TBL] [Abstract][Full Text] [Related]