These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 7569901)

  • 21. Local Ca(2+) transients and distribution of BK channels and ryanodine receptors in smooth muscle cells of guinea-pig vas deferens and urinary bladder.
    Ohi Y; Yamamura H; Nagano N; Ohya S; Muraki K; Watanabe M; Imaizumi Y
    J Physiol; 2001 Jul; 534(Pt. 2):313-26. PubMed ID: 11454953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The control of calcium release in heart muscle.
    Cannell MB; Cheng H; Lederer WJ
    Science; 1995 May; 268(5213):1045-9. PubMed ID: 7754384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Caffeine enhances intramembranous charge movement in frog skeletal muscle by increasing cytoplasmic Ca2+ concentration.
    Shirokova N; Ríos E
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):341-56. PubMed ID: 8782100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes.
    Lipp P; Niggli E
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):801-9. PubMed ID: 9518734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small-conductance calcium-activated potassium currents in mouse hyperexcitable denervated skeletal muscle.
    Neelands TR; Herson PS; Jacobson D; Adelman JP; Maylie J
    J Physiol; 2001 Oct; 536(Pt 2):397-407. PubMed ID: 11600675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local control model of excitation-contraction coupling in skeletal muscle.
    Stern MD; Pizarro G; Ríos E
    J Gen Physiol; 1997 Oct; 110(4):415-40. PubMed ID: 9379173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle fibers from senescent mice retain excitation-contraction coupling properties in culture.
    Wang ZM; Zheng Z; Messi ML; Delbono O
    In Vitro Cell Dev Biol Anim; 2007; 43(7):222-34. PubMed ID: 17712595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constitutive beta2-adrenergic signalling enhances sarcoplasmic reticulum Ca2+ cycling to augment contraction in mouse heart.
    Zhou YY; Song LS; Lakatta EG; Xiao RP; Cheng H
    J Physiol; 1999 Dec; 521 Pt 2(Pt 2):351-61. PubMed ID: 10581307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Confocal imaging of calcium release events in single smooth muscle cells.
    Bolton TB; Gordienko DV
    Acta Physiol Scand; 1998 Dec; 164(4):567-75. PubMed ID: 9887979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast imaging in two dimensions resolves extensive sources of Ca2+ sparks in frog skeletal muscle.
    Brum G; González A; Rengifo J; Shirokova N; Ríos E
    J Physiol; 2000 Nov; 528(Pt 3):419-33. PubMed ID: 11060121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method.
    Cheng H; Song LS; Shirokova N; González A; Lakatta EG; Ríos E; Stern MD
    Biophys J; 1999 Feb; 76(2):606-17. PubMed ID: 9929467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time course of individual Ca2+ sparks in frog skeletal muscle recorded at high time resolution.
    Lacampagne A; Ward CW; Klein MG; Schneider MF
    J Gen Physiol; 1999 Feb; 113(2):187-98. PubMed ID: 9925818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Local Ca2+ release events in skeletal muscle.
    Schneider MF; Rodney GG; Ward CW
    J Muscle Res Cell Motil; 2004; 25(8):587-9. PubMed ID: 16118845
    [No Abstract]   [Full Text] [Related]  

  • 34. Calcium-dependent inactivation terminates calcium release in skeletal muscle of amphibians.
    Ríos E; Zhou J; Brum G; Launikonis BS; Stern MD
    J Gen Physiol; 2008 Apr; 131(4):335-48. PubMed ID: 18347079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Type 3 and type 1 ryanodine receptors are localized in triads of the same mammalian skeletal muscle fibers.
    Flucher BE; Conti A; Takeshima H; Sorrentino V
    J Cell Biol; 1999 Aug; 146(3):621-30. PubMed ID: 10444070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the potassium channel from frog skeletal muscle sarcoplasmic reticulum membrane.
    Wang J; Best PM
    J Physiol; 1994 Jun; 477(Pt 2):279-90. PubMed ID: 7932219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct visualization of sarcoplasmic reticulum regions discharging Ca(2+)sparks in vascular myocytes.
    Gordienko DV; Greenwood IA; Bolton TB
    Cell Calcium; 2001 Jan; 29(1):13-28. PubMed ID: 11133352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclopiazonic acid and thapsigargin reduce Ca2+ influx in frog skeletal muscle fibres as a result of Ca2+ store depletion.
    Même W; Léoty C
    Acta Physiol Scand; 2001 Dec; 173(4):391-9. PubMed ID: 11903131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating.
    Ma J; González A; Chen R
    J Gen Physiol; 1996 Sep; 108(3):221-32. PubMed ID: 8882865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of K-201 on the calcium pump and calcium release channel of rat skeletal muscle.
    Almassy J; Sztretye M; Lukacs B; Dienes B; Szabo L; Szentesi P; Vassort G; Csernoch L; Jona I
    Pflugers Arch; 2008 Oct; 457(1):171-83. PubMed ID: 18458945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.