These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 7570654)

  • 1. The application of dosimetry models to identify key processes and parameters for default dose-response assessment approaches.
    Jarabek AM
    Toxicol Lett; 1995 Sep; 79(1-3):171-84. PubMed ID: 7570654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding mechanisms of inhaled toxicants: implications for replacing default factors with chemical-specific data.
    Bogdanffy MS; Jarabek AM
    Toxicol Lett; 1995 Dec; 82-83():919-32. PubMed ID: 8597163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of mechanistic information in risk assessment for toxic chemicals.
    Becking GC
    Toxicol Lett; 1995 May; 77(1-3):15-24. PubMed ID: 7618129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time extrapolation and interspecies extrapolation for locally acting substances in case of limited toxicological data.
    Kalberlah F; Föst U; Schneider K
    Ann Occup Hyg; 2002 Mar; 46(2):175-85. PubMed ID: 12074027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing uncertainty in risk assessment by using specific knowledge to replace default options.
    McClellan RO
    Drug Metab Rev; 1996; 28(1-2):149-79. PubMed ID: 8744594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a hybrid CFD-PBPK nasal dosimetry model in an inhalation risk assessment: an example with acrylic acid.
    Andersen M; Sarangapani R; Gentry R; Clewell H; Covington T; Frederick CB
    Toxicol Sci; 2000 Oct; 57(2):312-25. PubMed ID: 11006361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of physiologically based pharmacokinetic models for use in risk assessment.
    Chiu WA; Barton HA; DeWoskin RS; Schlosser P; Thompson CM; Sonawane B; Lipscomb JC; Krishnan K
    J Appl Toxicol; 2007; 27(3):218-37. PubMed ID: 17299829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologically based pharmacokinetic and pharmacodynamic modeling in health risk assessment and characterization of hazardous substances.
    Leung HW; Paustenbach DJ
    Toxicol Lett; 1995 Sep; 79(1-3):55-65. PubMed ID: 7570674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of physiologically based pharmacokinetic modeling in human health risk assessment of hazardous substances.
    Clewell HJ
    Toxicol Lett; 1995 Sep; 79(1-3):207-17. PubMed ID: 7570658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment.
    Barton HA; Clewell HJ
    Environ Health Perspect; 2000 May; 108 Suppl 2(Suppl 2):323-34. PubMed ID: 10807562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk management frameworks for human health and environmental risks.
    Jardine C; Hrudey S; Shortreed J; Craig L; Krewski D; Furgal C; McColl S
    J Toxicol Environ Health B Crit Rev; 2003; 6(6):569-720. PubMed ID: 14698953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaches for applications of physiologically based pharmacokinetic models in risk assessment.
    Thompson CM; Sonawane B; Barton HA; DeWoskin RS; Lipscomb JC; Schlosser P; Chiu WA; Krishnan K
    J Toxicol Environ Health B Crit Rev; 2008 Aug; 11(7):519-47. PubMed ID: 18584453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass transport analysis: inhalation rfc methods framework for interspecies dosimetric adjustment.
    Hanna LM; Lou SR; Su S; Jarabek AM
    Inhal Toxicol; 2001 May; 13(5):437-63. PubMed ID: 11295872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of non-default uncertainty factors in the U.S. EPA's Integrated Risk Information System (IRIS). Part I: UF(L), UF(S), and "other uncertainty factors".
    Stedeford T; Zhao QJ; Dourson ML; Banasik M; Hsu CH
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2007; 25(3):245-79. PubMed ID: 17763048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of physiologically based pharmacokinetic and physiologically based pharmacodynamic models for applications in toxicology and risk assessment.
    Andersen ME
    Toxicol Lett; 1995 Sep; 79(1-3):35-44. PubMed ID: 7570672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment factors--applications in health risk assessment of chemicals.
    Falk-Filipsson A; Hanberg A; Victorin K; Warholm M; Wallén M
    Environ Res; 2007 May; 104(1):108-27. PubMed ID: 17166493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moving from external exposure concentration to internal dose: duration extrapolation based on physiologically based pharmacokinetic derived estimates of internal dose.
    Simmons JE; Evans MV; Boyes WK
    J Toxicol Environ Health A; 2005 Jun 11-25; 68(11-12):927-50. PubMed ID: 16020185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision of estimates of an ADI (or TDI or PTWI).
    Speijers GJ
    Regul Toxicol Pharmacol; 1999 Oct; 30(2 Pt 2):S87-93. PubMed ID: 10597619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.