These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7570655)

  • 21. Computational pharmacokinetics during developmental windows of susceptibility.
    Barton HA
    J Toxicol Environ Health A; 2005 Jun 11-25; 68(11-12):889-900. PubMed ID: 16020183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Case study illustrating the WHO IPCS guidance on characterization and application of physiologically based pharmacokinetic models in risk assessment.
    Meek ME; Barton HA; Bessems JG; Lipscomb JC; Krishnan K
    Regul Toxicol Pharmacol; 2013 Jun; 66(1):116-29. PubMed ID: 23535119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The significance of excursions above the ADI: duration in relation to pivotal studies.
    Walker R
    Regul Toxicol Pharmacol; 1999 Oct; 30(2 Pt 2):S114-8. PubMed ID: 10597624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxicodynamics of low level toxicant interactions of biological significance: inhibition of tissue repair.
    Mehendale HM
    Toxicology; 1995 Dec; 105(2-3):251-66. PubMed ID: 8571362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Role of Extracellular Binding Proteins in the Cellular Uptake of Drugs: Impact on Quantitative In Vitro-to-In Vivo Extrapolations of Toxicity and Efficacy in Physiologically Based Pharmacokinetic-Pharmacodynamic Research.
    Poulin P; Burczynski FJ; Haddad S
    J Pharm Sci; 2016 Feb; 105(2):497-508. PubMed ID: 26173749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biologically based pharmacodynamic models: tools for toxicological research and risk assessment.
    Conolly RB; Andersen ME
    Annu Rev Pharmacol Toxicol; 1991; 31():503-23. PubMed ID: 2064384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A systematic evaluation of the use of physiologically based pharmacokinetic modeling for cross-species extrapolation.
    Thiel C; Schneckener S; Krauss M; Ghallab A; Hofmann U; Kanacher T; Zellmer S; Gebhardt R; Hengstler JG; Kuepfer L
    J Pharm Sci; 2015 Jan; 104(1):191-206. PubMed ID: 25393841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The application of dosimetry models to identify key processes and parameters for default dose-response assessment approaches.
    Jarabek AM
    Toxicol Lett; 1995 Sep; 79(1-3):171-84. PubMed ID: 7570654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toxicokinetics and physiologically based toxicokinetics in toxicology and risk assessment.
    Dixit R; Riviere J; Krishnan K; Andersen ME
    J Toxicol Environ Health B Crit Rev; 2003; 6(1):1-40. PubMed ID: 12587252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of in vitro data in developing a physiologically based pharmacokinetic model: Carbaryl as a case study.
    Yoon M; Kedderis GL; Yan GZ; Clewell HJ
    Toxicology; 2015 Jun; 332():52-66. PubMed ID: 24863738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Acute Exposure Guideline Level (AEGL) program: applications of physiologically based pharmacokinetic modeling.
    Bruckner JV; Keys DA; Fisher JW
    J Toxicol Environ Health A; 2004 Apr 23-May 28; 67(8-10):621-34. PubMed ID: 15192858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Review of acute chemical incidents as a first step in evaluating the usefulness of physiologically based pharmacokinetic models in such incidents.
    Hunault CC; Boerleider RZ; Hof BG; Kliest JJ; Meijer M; Nijhuis NJ; de Vries I; Meulenbelt J
    Clin Toxicol (Phila); 2014 Feb; 52(2):121-8. PubMed ID: 24446967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of physiologically-based pharmacokinetic/pharmacodynamic dosimetry models for chemical mixtures.
    Yang RS; el-Masri HA; Thomas RS; Constan AA
    Toxicol Lett; 1995 Dec; 82-83():497-504. PubMed ID: 8597101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment.
    Barton HA; Clewell HJ
    Environ Health Perspect; 2000 May; 108 Suppl 2(Suppl 2):323-34. PubMed ID: 10807562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Issues in the pharmacokinetics of trichloroethylene and its metabolites.
    Chiu WA; Okino MS; Lipscomb JC; Evans MV
    Environ Health Perspect; 2006 Sep; 114(9):1450-6. PubMed ID: 16966104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiologically based pharmacokinetic models for trichloroethylene and its oxidative metabolites.
    Fisher JW
    Environ Health Perspect; 2000 May; 108 Suppl 2(Suppl 2):265-73. PubMed ID: 10807557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical mixtures: challenge for toxicology and risk assessment.
    Simmons JE
    Toxicology; 1995 Dec; 105(2-3):111-9. PubMed ID: 8571350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of a site-specific reference dose for methylmercury for fish-eating populations.
    Shipp AM; Gentry PR; Lawrence G; Van Landingham C; Covington T; Clewell HJ; Gribben K; Crump K
    Toxicol Ind Health; 2000 Nov; 16(9-10):335-438. PubMed ID: 11762928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Are there sex and gender differences in acute exposure to chemicals in the same setting?
    Arbuckle TE
    Environ Res; 2006 Jun; 101(2):195-204. PubMed ID: 16233896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Approaches for applications of physiologically based pharmacokinetic models in risk assessment.
    Thompson CM; Sonawane B; Barton HA; DeWoskin RS; Lipscomb JC; Schlosser P; Chiu WA; Krishnan K
    J Toxicol Environ Health B Crit Rev; 2008 Aug; 11(7):519-47. PubMed ID: 18584453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.