These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 7570655)
41. Perspectives on collaboration and infrastructure development: industry perspectives. Knaak JB Toxicol Lett; 1995 Sep; 79(1-3):305-12. PubMed ID: 7570671 [TBL] [Abstract][Full Text] [Related]
42. Application of neurobehavioral toxicology methods to the military deployment toxicology assessment program. Rossi J; Ritchie GD; Nordholm AF; Knechtges PL; Wilson CL; Lin J; Alexander WK; Still KR Drug Chem Toxicol; 2000 Feb; 23(1):113-38. PubMed ID: 10711393 [TBL] [Abstract][Full Text] [Related]
43. Using dietary exposure and physiologically based pharmacokinetic/pharmacodynamic modeling in human risk extrapolations for acrylamide toxicity. Doerge DR; Young JF; Chen JJ; Dinovi MJ; Henry SH J Agric Food Chem; 2008 Aug; 56(15):6031-8. PubMed ID: 18624435 [TBL] [Abstract][Full Text] [Related]
44. Assessment of human exposure to chemicals from Superfund sites. Kamrin MA; Fischer LJ; Suk WA; Fouts JR; Pellizzari E; Thornton K Environ Health Perspect; 1994 Jan; 102 Suppl 1(Suppl 1):221-8. PubMed ID: 8187712 [TBL] [Abstract][Full Text] [Related]
45. Physiologically based pharmacokinetic analyses of simple mixtures. Krishnan K; Clewell HJ; Andersen ME Environ Health Perspect; 1994 Nov; 102 Suppl 9(Suppl 9):151-5. PubMed ID: 7698076 [TBL] [Abstract][Full Text] [Related]
46. The application of PBPK models in estimating human brain tissue manganese concentrations. Ramoju SP; Mattison DR; Milton B; McGough D; Shilnikova N; Clewell HJ; Yoon M; Taylor MD; Krewski D; Andersen ME Neurotoxicology; 2017 Jan; 58():226-237. PubMed ID: 27989617 [TBL] [Abstract][Full Text] [Related]
47. Physiologically based pharmacokinetic models in developmental toxicology. O'Flaherty EJ Risk Anal; 1994 Aug; 14(4):605-11. PubMed ID: 7972961 [TBL] [Abstract][Full Text] [Related]
48. Local kinetics and dynamics of xenobiotics. Pelkonen O; Kapitulnik J; Gundert-Remy U; Boobis AR; Stockis A Crit Rev Toxicol; 2008; 38(8):697-720. PubMed ID: 18686076 [TBL] [Abstract][Full Text] [Related]
49. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk. Kavlock R; Dix D J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897 [TBL] [Abstract][Full Text] [Related]
50. Physiological modes of action across species and toxicants: the key to predictive ecotoxicology. Ashauer R; Jager T Environ Sci Process Impacts; 2018 Jan; 20(1):48-57. PubMed ID: 29090718 [TBL] [Abstract][Full Text] [Related]
51. Pharmacological considerations for predicting PK/PD at the site of action for therapeutic proteins. Wang W; Zhou H Drug Discov Today Technol; 2016; 21-22():35-39. PubMed ID: 27978986 [TBL] [Abstract][Full Text] [Related]
52. Human health screening level risk assessments of tertiary-butyl acetate (TBAC): calculated acute and chronic reference concentration (RfC) and Hazard Quotient (HQ) values based on toxicity and exposure scenario evaluations. Bus JS; Banton MI; Faber WD; Kirman CR; McGregor DB; Pourreau DB Crit Rev Toxicol; 2015 Feb; 45(2):142-71. PubMed ID: 25629921 [TBL] [Abstract][Full Text] [Related]
53. Time extrapolation and interspecies extrapolation for locally acting substances in case of limited toxicological data. Kalberlah F; Föst U; Schneider K Ann Occup Hyg; 2002 Mar; 46(2):175-85. PubMed ID: 12074027 [TBL] [Abstract][Full Text] [Related]
54. Using physiologically based pharmacokinetic modeling and benchmark dose methods to derive an occupational exposure limit for N-methylpyrrolidone. Poet TS; Schlosser PM; Rodriguez CE; Parod RJ; Rodwell DE; Kirman CR Regul Toxicol Pharmacol; 2016 Apr; 76():102-12. PubMed ID: 26776754 [TBL] [Abstract][Full Text] [Related]
56. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate. Kirman CR; Sweeney LM; Corley R; Gargas ML Risk Anal; 2005 Apr; 25(2):271-84. PubMed ID: 15876203 [TBL] [Abstract][Full Text] [Related]
57. Chemical risk assessment and uncertainty associated with extrapolation across exposure duration. Pohl HR; Chou CH; Ruiz P; Holler JS Regul Toxicol Pharmacol; 2010 Jun; 57(1):18-23. PubMed ID: 19944126 [TBL] [Abstract][Full Text] [Related]
58. Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations. Dearfield KL; Gollapudi BB; Bemis JC; Benz RD; Douglas GR; Elespuru RK; Johnson GE; Kirkland DJ; LeBaron MJ; Li AP; Marchetti F; Pottenger LH; Rorije E; Tanir JY; Thybaud V; van Benthem J; Yauk CL; Zeiger E; Luijten M Environ Mol Mutagen; 2017 Jun; 58(5):264-283. PubMed ID: 27650663 [TBL] [Abstract][Full Text] [Related]
59. Significance of excursions of intake above the acceptable daily intake: effect of time and dose in developmental toxicology. Sullivan FM Regul Toxicol Pharmacol; 1999 Oct; 30(2 Pt 2):S94-8. PubMed ID: 10597620 [TBL] [Abstract][Full Text] [Related]
60. Applications of physiologic pharmacokinetic modeling in carcinogenic risk assessment. Krewski D; Withey JR; Ku LF; Andersen ME Environ Health Perspect; 1994 Dec; 102 Suppl 11(Suppl 11):37-50. PubMed ID: 7737040 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]