BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7570659)

  • 1. Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals.
    Woo YT; Lai DY; Argus MF; Arcos JC
    Toxicol Lett; 1995 Sep; 79(1-3):219-28. PubMed ID: 7570659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mode of action and the assessment of chemical hazards in the presence of limited data: use of structure-activity relationships (SAR) under TSCA, Section 5.
    Auer CM; Nabholz JV; Baetcke KP
    Environ Health Perspect; 1990 Jul; 87():183-97. PubMed ID: 2269224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The new chemicals process at the Environmental Protection Agency (EPA): structure-activity relationships for hazard identification and risk assessment.
    Wagner PM; Nabholz JV; Kent RJ
    Toxicol Lett; 1995 Sep; 79(1-3):67-73. PubMed ID: 7570675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and validation of US EPA's OncoLogic® expert system and analysis of its modulating factors for structural alerts.
    Benigni R; Bossa C; Alivernini S; Colafranceschi M
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2012; 30(2):152-73. PubMed ID: 22690713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. International Commission for Protection Against Environmental Mutagens and Carcinogens. Application of SAR methods to non-congeneric data bases associated with carcinogenicity and mutagenicity: issues and approaches.
    Richard AM
    Mutat Res; 1994 Feb; 305(1):73-97. PubMed ID: 7508549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals. II. Using oral slope factor as a measure of carcinogenic potency.
    Wang NC; Venkatapathy R; Bruce RM; Moudgal C
    Regul Toxicol Pharmacol; 2011 Mar; 59(2):215-26. PubMed ID: 20951756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroform: An EPA test case.
    Schmidt CW
    Environ Health Perspect; 1999 Jul; 107(7):A358-60. PubMed ID: 10379014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. U.S. Environmental Protection Agency's revised guidelines for carcinogen risk assessment: evaluating a postulated mode of carcinogenic action in guiding dose-response extrapolation.
    Wiltse JA; Dellarco VL
    Mutat Res; 2000 Jan; 464(1):105-15. PubMed ID: 10633182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the utility of the lifetime mouse bioassay in the identification of cancer hazards for humans.
    Osimitz TG; Droege W; Boobis AR; Lake BG
    Food Chem Toxicol; 2013 Oct; 60():550-62. PubMed ID: 23954551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing uncertainty in risk assessment by using specific knowledge to replace default options.
    McClellan RO
    Drug Metab Rev; 1996; 28(1-2):149-79. PubMed ID: 8744594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of criteria used to access carcinogenicity in CPANN QSAR models versus the knowledge-based expert system Toxtree.
    Fjodorova N; Novič M
    SAR QSAR Environ Res; 2014; 25(6):423-41. PubMed ID: 24716754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Animal carcinogenicity studies: implications for the REACH system.
    Knight A; Bailey J; Balcombe J
    Altern Lab Anim; 2006 Mar; 34 Suppl 1():139-47. PubMed ID: 16555967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental hazard and risk assessment under the United States Toxic Substances Control Act.
    Nabholz JV
    Sci Total Environ; 1991 Dec; 109-110():649-65. PubMed ID: 1815379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing computational toxicology models with phytochemicals.
    Valerio LG; Arvidson KB; Busta E; Minnier BL; Kruhlak NL; Benz RD
    Mol Nutr Food Res; 2010 Feb; 54(2):186-94. PubMed ID: 20024931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. International Commission for Protection Against Environmental Mutagens and Carcinogens. Use of SAR in computer-assisted prediction of carcinogenicity and mutagenicity of chemicals by the TOPKAT program.
    Enslein K; Gombar VK; Blake BW
    Mutat Res; 1994 Feb; 305(1):47-61. PubMed ID: 7508547
    [No Abstract]   [Full Text] [Related]  

  • 18. Approaches to cancer assessment in EPA's Integrated Risk Information System.
    Gehlhaus MW; Gift JS; Hogan KA; Kopylev L; Schlosser PM; Kadry AR
    Toxicol Appl Pharmacol; 2011 Jul; 254(2):170-80. PubMed ID: 21034767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of structure-activity relationships (SARs) in the aquatic toxicity evaluation of discrete organic chemicals.
    Clements RG; Nabholz JV; Zeeman MG; Auer CM
    SAR QSAR Environ Res; 1995; 3(3):203-15. PubMed ID: 8564855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Animal carcinogenicity studies: 1. Poor human predictivity.
    Knight A; Bailey J; Balcombe J
    Altern Lab Anim; 2006 Feb; 34(1):19-27. PubMed ID: 16522147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.