BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 7571002)

  • 1. Neural networks that co-ordinate locomotion and body orientation in lamprey.
    Grillner S; Deliagina T; Ekeberg O ; el Manira A; Hill RH; Lansner A; Orlovsky GN; Wallén P
    Trends Neurosci; 1995 Jun; 18(6):270-9. PubMed ID: 7571002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications of locomotor pattern underlying escape behavior in the lamprey.
    Islam SS; Zelenin PV
    J Neurophysiol; 2008 Jan; 99(1):297-307. PubMed ID: 18003880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural bases of goal-directed locomotion in vertebrates--an overview.
    Grillner S; Wallén P; Saitoh K; Kozlov A; Robertson B
    Brain Res Rev; 2008 Jan; 57(1):2-12. PubMed ID: 17916382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-HT and dopamine modulates CaV1.3 calcium channels involved in postinhibitory rebound in the spinal network for locomotion in lamprey.
    Wang D; Grillner S; Wallén P
    J Neurophysiol; 2011 Mar; 105(3):1212-24. PubMed ID: 21228305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of reticulospinal neurons in the lamprey to lateral turns.
    Karayannidou A; Zelenin PV; Orlovsky GN; Deliagina TG
    J Neurophysiol; 2007 Jan; 97(1):512-21. PubMed ID: 17079339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reticulospinal neurons controlling forward and backward swimming in the lamprey.
    Zelenin PV
    J Neurophysiol; 2011 Mar; 105(3):1361-71. PubMed ID: 21248057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phasic modulation of reticulospinal neurones during fictive locomotion and other types of spinal motor activity in lamprey.
    Kasicki S; Grillner S; Ohta Y; Dubuc R; Brodin L
    Brain Res; 1989 Apr; 484(1-2):203-16. PubMed ID: 2713681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion channels of importance for the locomotor pattern generation in the lamprey brainstem-spinal cord.
    Grillner S; Wallén P; Hill R; Cangiano L; El Manira A
    J Physiol; 2001 May; 533(Pt 1):23-30. PubMed ID: 11351009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phasic modulation of transmission from vestibular inputs to reticulospinal neurons during fictive locomotion in lampreys.
    Bussières N; Dubuc R
    Brain Res; 1992 Jun; 582(1):147-53. PubMed ID: 1323371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extent and time course of restoration of descending brainstem projections in spinal cord-transected lamprey.
    Davis GR; McClellan AD
    J Comp Neurol; 1994 Jun; 344(1):65-82. PubMed ID: 8063956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of spinal cord inputs in modulating the activity of reticulospinal neurons during fictive locomotion in the lamprey.
    Dubuc R; Grillner S
    Brain Res; 1989 Mar; 483(1):196-200. PubMed ID: 2650805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neural control of respiration in lampreys.
    Missaghi K; Le Gal JP; Gray PA; Dubuc R
    Respir Physiol Neurobiol; 2016 Dec; 234():14-25. PubMed ID: 27562521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neuronal bases of locomotion in lamprey--in vitro studies of the brainstem-spinal cord.
    Grillner S; Wallén P; Brodin L; Christenson J; Dubuc R; Hill R; Ohta Y
    Acta Biol Hung; 1988; 39(2-3):145-9. PubMed ID: 3077001
    [No Abstract]   [Full Text] [Related]  

  • 16. The spino-reticulo-spinal loop can slow down the NMDA-activated spinal locomotor network in lamprey.
    Vinay L; Grillner S
    Neuroreport; 1993 Jun; 4(6):609-12. PubMed ID: 8394151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phasic variations of extracellular potassium during fictive swimming in the lamprey spinal cord in vitro.
    Wallén P; Grafe P; Grillner S
    Acta Physiol Scand; 1984 Mar; 120(3):457-63. PubMed ID: 6741576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different forms of locomotion in the spinal lamprey.
    Hsu LJ; Orlovsky GN; Zelenin PV
    Eur J Neurosci; 2014 Jun; 39(12):2037-49. PubMed ID: 24641591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between the caudal brainstem and the lamprey central pattern generator for locomotion.
    Cohen AH; Guan L; Harris J; Jung R; Kiemel T
    Neuroscience; 1996 Oct; 74(4):1161-73. PubMed ID: 8895883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the spinal generation of locomotion, with particular reference to a simple vertebrate: the lamprey.
    Grillner S; McClellan A; Sigvardt K; Wallén P
    Birth Defects Orig Artic Ser; 1983; 19(4):347-56. PubMed ID: 6135460
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.