These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 7571121)
1. Cryo-electron energy loss spectroscopy: observations on vitrified hydrated specimens and radiation damage. Leapman RD; Sun S Ultramicroscopy; 1995 Jul; 59(1-4):71-9. PubMed ID: 7571121 [TBL] [Abstract][Full Text] [Related]
2. Water distributions of hydrated biological specimens by valence electron energy loss spectroscopy. Sun S; Shi S; Leapman R Ultramicroscopy; 1993 Jul; 50(2):127-39. PubMed ID: 8367908 [TBL] [Abstract][Full Text] [Related]
3. Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. McDowall AW; Chang JJ; Freeman R; Lepault J; Walter CA; Dubochet J J Microsc; 1983 Jul; 131(Pt 1):1-9. PubMed ID: 6350598 [TBL] [Abstract][Full Text] [Related]
5. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy. Yakovlev S; Misra M; Shi S; Firlar E; Libera M Ultramicroscopy; 2010 Jun; 110(7):866-76. PubMed ID: 20447768 [TBL] [Abstract][Full Text] [Related]
6. In-situ integrity control of frozen-hydrated, vitreous lamellas prepared by the cryo-focused ion beam-scanning electron microscope. de Winter DA; Mesman RJ; Hayles MF; Schneijdenberg CT; Mathisen C; Post JA J Struct Biol; 2013 Jul; 183(1):11-8. PubMed ID: 23742839 [TBL] [Abstract][Full Text] [Related]
7. Transfer, observation and analysis of frozen hydrated specimens. Hax WM; Lichtenegger S J Microsc; 1982 Jun; 126(Pt 3):275-84. PubMed ID: 7097762 [TBL] [Abstract][Full Text] [Related]
8. High-density morphologies of ice in high-pressure frozen biological specimens. Richter K Ultramicroscopy; 1994 Mar; 53(3):237-49. PubMed ID: 8160307 [TBL] [Abstract][Full Text] [Related]
9. Quantitative water mapping of cryosectioned cells by electron energy-loss spectroscopy. Sun SQ; Shi SL; Hunt JA; Leapman RD J Microsc; 1995 Jan; 177(Pt 1):18-30. PubMed ID: 7897645 [TBL] [Abstract][Full Text] [Related]
10. Specimen thickness dependence of hydrogen evolution during cryo-transmission electron microscopy of hydrated soft materials. Yakovlev S; Misra M; Shi S; Libera M J Microsc; 2009 Dec; 236(3):174-9. PubMed ID: 19941557 [TBL] [Abstract][Full Text] [Related]
11. Quantitative energy-filtered electron microscopy of biological molecules in ice. Langmore JP; Smith MF Ultramicroscopy; 1992 Oct; 46(1-4):349-73. PubMed ID: 1336234 [TBL] [Abstract][Full Text] [Related]
13. Cryo-electron microscopy of vitrified specimens: an approach to the study of bulk specimens. Erk I; Delacroix H; Nicolas G; Ranck JL; Lepault J J Electron Microsc Tech; 1991 Aug; 18(4):406-10. PubMed ID: 1919793 [TBL] [Abstract][Full Text] [Related]
14. Origin and Suppression of Beam Damage-Induced Oxygen-K Edge Artifact from γ-Al Ayoola HO; Li CH; House SD; Bonifacio CS; Kisslinger K; Jinschek J; Saidi WA; Yang JC Ultramicroscopy; 2020 Dec; 219():113127. PubMed ID: 33059174 [TBL] [Abstract][Full Text] [Related]
15. Ice crystal damage and radiation effects in relation to microscopy and analysis at low temperatures. Echlin P J Microsc; 1991 Jan; 161(Pt 1):159-70. PubMed ID: 2016734 [TBL] [Abstract][Full Text] [Related]
16. Progress in scanning electron microscopy of frozen-hydrated biological specimens. Hermann R; Müller M Scanning Microsc; 1993 Mar; 7(1):343-9; discussion 349-50. PubMed ID: 8316804 [TBL] [Abstract][Full Text] [Related]
17. Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples. Marko M; Hsieh C; Moberlychan W; Mannella CA; Frank J J Microsc; 2006 Apr; 222(Pt 1):42-7. PubMed ID: 16734713 [TBL] [Abstract][Full Text] [Related]
18. Thickness measurement of hydrated and dehydrated cryosections by EELS. Shi S; Sun S; Andrews SB; Leapman RD Microsc Res Tech; 1996 Feb; 33(3):241-50. PubMed ID: 8652882 [TBL] [Abstract][Full Text] [Related]