These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7571126)

  • 41. Linear and nonlinear characterization of microbubbles and tissue using the Nakagami statistical model.
    Bahbah N; Novell A; Bouakaz A; Djelouah H
    Ultrasonics; 2017 Apr; 76():200-207. PubMed ID: 28119148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Statistics of the envelope of ultrasonic backscatter from human trabecular bone.
    Litniewski J; Cieslik L; Wojcik J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):2224-32. PubMed ID: 21973377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of ultrasound frequency on the Nakagami statistics of human liver tissues.
    Tsui PH; Zhou Z; Lin YH; Hung CM; Chung SJ; Wan YL
    PLoS One; 2017; 12(8):e0181789. PubMed ID: 28763461
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changes in backscattered ultrasonic envelope statistics as a function of thrombus age: an in vitro study.
    Fang J; Chen CK; Peng JY; Hsu CH; Jeng YM; Lee YH; Lin JJ; Tsui PH
    Ultrasound Med Biol; 2015 Feb; 41(2):498-508. PubMed ID: 25542488
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo.
    Raju BI; Srinivasan MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):871-82. PubMed ID: 12152941
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of Coherent and Diffuse Scattering Using a Reference Phantom.
    Rosado-Mendez IM; Drehfal LC; Zagzebski JA; Hall TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1306-20. PubMed ID: 27046872
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improvement of lesion detection by echographic image processing: signal-to-noise-ratio imaging.
    Verhoeven JT; Thijssen JM; Theeuwes AG
    Ultrason Imaging; 1991 Jul; 13(3):238-51. PubMed ID: 1957422
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Statistical variations of ultrasound signals backscattered from flowing blood.
    Huang CC; Wang SH
    Ultrasound Med Biol; 2007 Dec; 33(12):1943-54. PubMed ID: 17673357
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New method of estimating the ultrasonic beam ratio parameter for characterizing sound propagation in tissue.
    Fein M; Zuna I; Lorenz WJ
    Ultrasound Med Biol; 1992; 18(10):881-9. PubMed ID: 1481290
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-Rayleigh first-order statistics of ultrasonic backscatter from normal myocardium.
    Clifford L; Fitzgerald P; James D
    Ultrasound Med Biol; 1993; 19(6):487-95. PubMed ID: 8236590
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ESTIMATION METHOD OF THE HOMODYNED K-DISTRIBUTION BASED ON THE MEAN INTENSITY AND TWO LOG-MOMENTS.
    Destrempes F; Porée J; Cloutier G
    SIAM J Imaging Sci; 2013 Aug; 6(3):1499-1530. PubMed ID: 24795788
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectral characterization of tissues microstructure by ultrasounds: a stochastic approach.
    Landini L; Verrazzani L
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):448-56. PubMed ID: 18285062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Semi-empirical bone model for determination of trabecular structure properties from backscattered ultrasound.
    Litniewski J; Nowicki A; Lewin PA
    Ultrasonics; 2009 Jun; 49(6-7):505-13. PubMed ID: 19232659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrasonic characterization of abdominal tissues via digital analysis of backscattered waveforms.
    Sommer FG; Joynt LF; Carroll BA; Macovski A
    Radiology; 1981 Dec; 141(3):811-7. PubMed ID: 7302239
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of the compound probability density function for characterization of breast masses in ultrasound B scans.
    Shankar PM; Piccoli CW; Reid JM; Forsberg F; Goldberg BB
    Phys Med Biol; 2005 May; 50(10):2241-8. PubMed ID: 15876664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Speckle reduction in ultrasonic images through a maximum likelihood based adaptive filter.
    Shankar PM
    Phys Med Biol; 2006 Nov; 51(21):5591-602. PubMed ID: 17047272
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of logarithmic compression on estimation of the Nakagami parameter for ultrasonic tissue characterization: a simulation study.
    Tsui PH; Wang SH; Huang CC
    Phys Med Biol; 2005 Jul; 50(14):3235-44. PubMed ID: 16177506
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nonlinear receiver compression effects on the amplitude distribution of backscattered ultrasonic signals.
    Waag RC; Demczar BA; Case TJ
    IEEE Trans Biomed Eng; 1991 Jul; 38(7):628-33. PubMed ID: 1879854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrasonic imaging of the stress distribution in elastic media due to an external compressor.
    Ponnekanti H; Ophir J; Cespedes I
    Ultrasound Med Biol; 1994; 20(1):27-33. PubMed ID: 8197624
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Attenuation measurement uncertainties caused by speckle statistics.
    Parker KJ
    J Acoust Soc Am; 1986 Sep; 80(3):727-34. PubMed ID: 3531278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.