BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7573417)

  • 1. Interaction of decreased arterial PO2 and exercise on carbohydrate metabolism in the dog.
    Zinker BA; Wilson RD; Wasserman DH
    Am J Physiol; 1995 Sep; 269(3 Pt 1):E409-17. PubMed ID: 7573417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of pancreatic hormone responses to the elevation in carbohydrate metabolism with reduced PaO2.
    Zinker BA; Wilson R; Wasserman DH
    Am J Physiol; 1995 Jun; 268(6 Pt 1):E1174-83. PubMed ID: 7611394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate metabolism during exercise: influence of circulating fat availability.
    Bracy DP; Zinker BA; Jacobs JC; Lacy DB; Wasserman DH
    J Appl Physiol (1985); 1995 Aug; 79(2):506-13. PubMed ID: 7592210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic regulation in peripheral tissues and transition to increased gluconeogenic mode during prolonged exercise.
    Wasserman DH; Lacy DB; Bracy D; Williams PE
    Am J Physiol; 1992 Aug; 263(2 Pt 1):E345-54. PubMed ID: 1514617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute adaptation of carbohydrate metabolism to decreased arterial PO2.
    Zinker BA; Namdaran K; Wilson R; Lacy DB; Wasserman DH
    Am J Physiol; 1994 Jun; 266(6 Pt 1):E921-9. PubMed ID: 8023923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glucose uptake and metabolism by working muscle. An in vivo analysis.
    Zinker BA; Lacy DB; Bracy D; Jacobs J; Wasserman DH
    Diabetes; 1993 Jul; 42(7):956-65. PubMed ID: 8513977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of glucose and insulin loads to the exercising limb in increasing glucose uptake and metabolism.
    Zinker BA; Lacy DB; Bracy DP; Wasserman DH
    J Appl Physiol (1985); 1993 Jun; 74(6):2915-21. PubMed ID: 8365992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids.
    Ahlborg G; Felig P; Hagenfeldt L; Hendler R; Wahren J
    J Clin Invest; 1974 Apr; 53(4):1080-90. PubMed ID: 4815076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of gluconeogenesis during rest and exercise in the depancreatized dog.
    Wasserman DH; Johnson JL; Bupp JL; Lacy DB; Bracy DP
    Am J Physiol; 1993 Jul; 265(1 Pt 1):E51-60. PubMed ID: 8338154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose metabolism during leg exercise in man.
    Wahren J; Felig P; Ahlborg G; Jorfeldt L
    J Clin Invest; 1971 Dec; 50(12):2715-25. PubMed ID: 5129319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose turnover in response to exercise during high- and low-FIO2 breathing in man.
    Cooper DM; Wasserman DH; Vranic M; Wasserman K
    Am J Physiol; 1986 Aug; 251(2 Pt 1):E209-14. PubMed ID: 3526922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arterial blood gases and acid-base status of dogs during graded dynamic exercise.
    Musch TI; Friedman DB; Haidet GC; Stray-Gundersen J; Waldrop TG; Ordway GA
    J Appl Physiol (1985); 1986 Nov; 61(5):1914-9. PubMed ID: 3096950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dichloroacetate on hemodynamic responses to dynamic exercise in dogs.
    Delehanty JM; Imai N; Liang CS
    J Appl Physiol (1985); 1992 Feb; 72(2):515-20. PubMed ID: 1559926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise.
    Stellingwerff T; Leblanc PJ; Hollidge MG; Heigenhauser GJ; Spriet LL
    Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1180-90. PubMed ID: 16403777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise.
    Stellingwerff T; Glazier L; Watt MJ; LeBlanc PJ; Heigenhauser GJ; Spriet LL
    J Appl Physiol (1985); 2005 Jan; 98(1):250-6. PubMed ID: 15377650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyruvate shuttling during rest and exercise before and after endurance training in men.
    Henderson GC; Horning MA; Lehman SL; Wolfel EE; Bergman BC; Brooks GA
    J Appl Physiol (1985); 2004 Jul; 97(1):317-25. PubMed ID: 14990548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of elevated FFA on carbohydrate and lipid oxidation during prolonged exercise in humans.
    Ravussin E; Bogardus C; Scheidegger K; LaGrange B; Horton ED; Horton ES
    J Appl Physiol (1985); 1986 Mar; 60(3):893-900. PubMed ID: 3514572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leg and arm lactate and substrate kinetics during exercise.
    Van Hall G; Jensen-Urstad M; Rosdahl H; Holmberg HC; Saltin B; Calbet JA
    Am J Physiol Endocrinol Metab; 2003 Jan; 284(1):E193-205. PubMed ID: 12388120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of prior exercise on the partitioning of an intestinal glucose load between splanchnic bed and skeletal muscle.
    Hamilton KS; Gibbons FK; Bracy DP; Lacy DB; Cherrington AD; Wasserman DH
    J Clin Invest; 1996 Jul; 98(1):125-35. PubMed ID: 8690783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splanchnic glucose metabolism during leg exercise in 60-hour-fasted human subjects.
    Björkman O; Eriksson LS
    Am J Physiol; 1983 Nov; 245(5 Pt 1):E443-8. PubMed ID: 6638171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.