BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7573545)

  • 21. Opioids and nitric oxide contribute to hypoxia-induced pial arterial vasodilation in newborn pigs.
    Armstead WM
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H226-32. PubMed ID: 7530918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain injury impairs prostaglandin cerebrovasodilation.
    Armstead WM
    J Neurotrauma; 1998 Sep; 15(9):721-9. PubMed ID: 9753219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of activation of calcium-sensitive K+ channels and cAMP in opioid-induced pial artery dilation.
    Armstead WM
    Brain Res; 1997 Feb; 747(2):252-8. PubMed ID: 9046000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of brain injury on opioid-induced pial artery vasodilation.
    Thorogood MC; Armstead WM
    Am J Physiol; 1995 Nov; 269(5 Pt 2):H1776-83. PubMed ID: 7503277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets.
    Bari F; Louis TM; Busija DW
    Stroke; 1998 Jan; 29(1):222-7; discussion 227-8. PubMed ID: 9445354
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of endothelial nitric oxide synthase in hypoxia-induced pial artery dilation.
    Wilderman MJ; Armstead WM
    J Cereb Blood Flow Metab; 1998 May; 18(5):531-8. PubMed ID: 9591845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superoxide generation links protein kinase C activation to impaired ATP-sensitive K+ channel function after brain injury.
    Armstead WM
    Stroke; 1999 Jan; 30(1):153-9. PubMed ID: 9880404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of kca channel activation to hypoxic cerebrovasodilation does not involve NO.
    Armstead WM
    Brain Res; 1998 Jul; 799(1):44-8. PubMed ID: 9666071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of cAMP on cerebrospinal fluid opioid concentration: role in cAMP-induced pial artery dilation.
    Wilderman MJ; Armstead WM
    Eur J Pharmacol; 1996 Aug; 309(3):243-9. PubMed ID: 8874147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heat shock protein modulation of KATP and KCa channel cerebrovasodilation after brain injury.
    Armstead WM; Hecker JG
    Am J Physiol Heart Circ Physiol; 2005 Sep; 289(3):H1184-90. PubMed ID: 15908467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endothelin-Induced cyclooxygenase-dependent superoxide generation contributes to K+ channel functional impairment after brain injury.
    Armstead WM
    J Neurotrauma; 2001 Oct; 18(10):1039-48. PubMed ID: 11686491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vasopressin-induced protein kinase C-dependent superoxide generation contributes to atp-sensitive potassium channel but not calcium-sensitive potassium channel function impairment after brain injury.
    Armstead WM
    Stroke; 2001 Jun; 32(6):1408-14. PubMed ID: 11387506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMDA dilates pial arteries by KATP and Kca channel activation.
    Philip S; Armstead WM
    Brain Res Bull; 2004 Mar; 63(2):127-31. PubMed ID: 15130701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Endothelin impairs ATP-sensitive K+ channel function after brain injury.
    Kasemsri T; Armstead WM
    Am J Physiol; 1997 Dec; 273(6):H2639-47. PubMed ID: 9435598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of NOC/oFQ in impaired opioid-induced pial artery dilation following brain injury.
    Armstead WM
    Brain Res; 2000 Jun; 869(1-2):231-5. PubMed ID: 10865080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1994 May; 74(5):1005-8. PubMed ID: 8156623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain injury impairs ATP-sensitive K+ channel function in piglet cerebral arteries.
    Armstead WM
    Stroke; 1997 Nov; 28(11):2273-9; discussion 2280. PubMed ID: 9368576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blockade of adenosine triphosphate-sensitive potassium channels eliminates isoflurane-induced coronary artery vasodilation.
    Cason BA; Shubayev I; Hickey RF
    Anesthesiology; 1994 Nov; 81(5):1245-55; discussion 27A-28A. PubMed ID: 7978484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of impaired cAMP and calcium-sensitive K+ channel function in altered cerebral hemodynamics following brain injury.
    Armstead WM
    Brain Res; 1997 Sep; 768(1-2):177-84. PubMed ID: 9369314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of vasodilation of cerebral vessels induced by the potassium channel opener nicorandil in canine in vivo experiments.
    Ishiyama T; Dohi S; Iida H; Akamatsu S; Ohta S; Shimonaka H
    Stroke; 1994 Aug; 25(8):1644-50. PubMed ID: 8042218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.