These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7574)

  • 1. Manganese-dependent NADPH oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement.
    Curnutte JT; Karnovsky ML; Babior BM
    J Clin Invest; 1976 Apr; 57(4):1059-67. PubMed ID: 7574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes.
    Babior BM; Curnutte JT; Kipnes BS
    J Clin Invest; 1975 Oct; 56(4):1035-42. PubMed ID: 239968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide generation by digitonin-stimulated guinea pig granulocytes. A basis for a continuous assay for monitoring superoxide production and for the study of the activation of the generating system.
    Cohen HJ; Chovaniec ME
    J Clin Invest; 1978 Apr; 61(4):1081-7. PubMed ID: 26695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further characterization of NADPH oxidase activity of human polymorphonuclear leukocytes.
    McPhail LC; DeChatelet LR; Shirley PS
    J Clin Invest; 1976 Oct; 58(4):774-80. PubMed ID: 965484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the mechanism of metabolic stimulation in polymorphonuclear leucocytes during phagocytosis. I. Evidence for superoxide anion involvement in the oxidation of NADPH2.
    Patriarca P; Dri P; Kakinuma K; Tedesco F; Rossi F
    Biochim Biophys Acta; 1975 Apr; 385(2):380-6. PubMed ID: 236010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide production by digitonin-stimulated guinea pig granulocytes. The effects of N-ethyl maleimide, divalent cations; and glycolytic and mitochondrial inhibitors on the activation of the superoxide generating system.
    Cohen HJ; Chovaniec ME
    J Clin Invest; 1978 Apr; 61(4):1088-96. PubMed ID: 207722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide dismutase-like activity of metal substituted lactoferrin derivatives.
    Ishisaka R; Kanno T; Kanematsu H; Utsumi T; Akiyama J; Horton AA; Yoshioka T
    Physiol Chem Phys Med NMR; 1998; 30(1):1-13. PubMed ID: 9807232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of NADH and NADPH oxidase activities in granules isolated from human polymorphonuclear leukocytes with a fluorometric assay.
    Iverson D; DeChatelet LR; Spitznagel JK; Wang P
    J Clin Invest; 1977 Feb; 59(2):282-90. PubMed ID: 833275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox cycling of 2-(x'-mono, -di, -trichlorophenyl)- 1, 4-benzoquinones, oxidation products of polychlorinated biphenyls.
    McLean MR; Twaroski TP; Robertson LW
    Arch Biochem Biophys; 2000 Apr; 376(2):449-55. PubMed ID: 10775433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH as a co-substrate for studies of the chlorinating activity of myeloperoxidase.
    Auchère F; Capeillère-Blandin C
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):603-13. PubMed ID: 10527939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of action of lymphokines. IX. The enzymatic basis of hydrogen peroxide production by lymphokine-activated macrophages.
    Freund M; Pick E
    J Immunol; 1986 Aug; 137(4):1312-8. PubMed ID: 3016093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Enzyme system and coenzymes involved in the energy metabolism of leukocytes. Function and metabolism of polymorphonuclear neutrophils].
    Frei J; Aellig A; Nessi P
    Ann Biol Clin (Paris); 1975; 33(6):459-64. PubMed ID: 5934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The particulate superoxide-forming system from human neutrophils. Properties of the system and further evidence supporting its participation in the respiratory burst.
    Babior BM; Curnutte JT; McMurrich BJ
    J Clin Invest; 1976 Oct; 58(4):989-96. PubMed ID: 9426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological defense mechanisms. The effect of bacteria and serum on superoxide production by granulocytes.
    Curnutte JT; Babior BM
    J Clin Invest; 1974 Jun; 53(6):1662-72. PubMed ID: 4364409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purified leukocyte cytochrome b558 incorporated into liposomes catalyzes a cytosolic factor dependent diaphorase activity.
    Li J; Guillory RJ
    Biochemistry; 1997 May; 36(18):5529-37. PubMed ID: 9154936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of acetaminophen-stimulated NADPH oxidation catalyzed by the peroxidase-H2O2 system.
    Keller RJ; Hinson JA
    Drug Metab Dispos; 1991; 19(1):184-7. PubMed ID: 1673396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paraquat and iron-dependent lipid peroxidation. NADPH versus NADPH-generating systems.
    Fernandez Y; Anglade F; Mitjavila S
    Biol Trace Elem Res; 2000 Jun; 74(3):191-201. PubMed ID: 11055806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the guinea pig granulocyte NAD(P)H-dependent superoxide generating enzyme: localization in a plasma membrane enriched particle and kinetics of activation.
    Cohen HJ; Chovaniec ME; Davies WA
    Blood; 1980 Mar; 55(3):355-63. PubMed ID: 6244012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Captopril--a potential free radical scavenger: inhibition of PMN NADPH oxidase.
    Egan TM; Minta JO; Scrimgeour KG; Cooper JD
    Clin Invest Med; 1988 Oct; 11(5):351-6. PubMed ID: 2846220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.