These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 7574056)
1. Fluorine-19 nuclear magnetic resonance imaging and spectroscopy of sevoflurane uptake, distribution, and elimination in rat brain. Xu Y; Tang P; Zhang W; Firestone L; Winter PM Anesthesiology; 1995 Oct; 83(4):766-74. PubMed ID: 7574056 [TBL] [Abstract][Full Text] [Related]
2. Elimination kinetics of sevoflurane and halothane from blood, brain, and adipose tissue in the rat. Stern RC; Towler SC; White PF; Evers AS Anesth Analg; 1990 Dec; 71(6):658-64. PubMed ID: 2240639 [TBL] [Abstract][Full Text] [Related]
3. A nuclear magnetic resonance advance. Imaging fluorinated anesthetics in the brain. Litt L Anesthesiology; 1995 Oct; 83(4):651-3. PubMed ID: 7574042 [No Abstract] [Full Text] [Related]
5. The potency of fluorinated ether anesthetics correlates with their 19F spin-spin relaxation times in brain tissue. Evers AS; Haycock JC; d'Avignon DA Biochem Biophys Res Commun; 1988 Mar; 151(3):1039-45. PubMed ID: 2895643 [TBL] [Abstract][Full Text] [Related]
6. Use of 19F-nuclear magnetic resonance and gas chromatography-electron capture detection in the quantitative analysis of fluorine-containing metabolites in urine of sevoflurane-anaesthetized patients. Orhan H; Commandeur JN; Sahin G; Aypar U; Sahin A; Vermeulen NP Xenobiotica; 2004 Mar; 34(3):301-16. PubMed ID: 15204701 [TBL] [Abstract][Full Text] [Related]
7. Uptake and elimination of sevoflurane in rabbit tissues--an in vivo magnetic resonance spectroscopy study. Takeda T; Makita K; Ishikawa S; Kaneda K; Yokoyama K; Amaha K Can J Anaesth; 2000 Jun; 47(6):579-84. PubMed ID: 10875723 [TBL] [Abstract][Full Text] [Related]
8. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Kharasch ED; Thummel KE Anesthesiology; 1993 Oct; 79(4):795-807. PubMed ID: 8214760 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the cerebral distribution of general anesthetics in vivo by two-dimensional 19F chemical shift imaging. Venkatasubramanian PN; Shen YJ; Wyrwicz AM Magn Reson Med; 1996 Apr; 35(4):626-30. PubMed ID: 8992217 [TBL] [Abstract][Full Text] [Related]
10. Volatile anesthetics compete for common binding sites on bovine serum albumin: a 19F-NMR study. Dubois BW; Cherian SF; Evers AS Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6478-82. PubMed ID: 8341659 [TBL] [Abstract][Full Text] [Related]
11. 19F-nuclear magnetic resonance spectroscopy. Its use in defining molecular sites of anesthetic action. Evers AS; Dubois BW Ann N Y Acad Sci; 1991; 625():725-32. PubMed ID: 2058920 [No Abstract] [Full Text] [Related]
12. An in vivo study of halothane uptake and elimination in the rat brain with fluorine nuclear magnetic resonance spectroscopy. Litt L; González-Méndez R; James TL; Sessler DI; Mills P; Chew W; Moseley M; Pereira B; Severinghaus JW; Hamilton WK Anesthesiology; 1987 Aug; 67(2):161-8. PubMed ID: 3605742 [TBL] [Abstract][Full Text] [Related]
13. An in vivo 19F nuclear magnetic resonance study of isoflurane elimination from the rabbit brain. Mills P; Sessler DI; Moseley M; Chew W; Pereira B; James TL; Litt L Anesthesiology; 1987 Aug; 67(2):169-73. PubMed ID: 3605743 [TBL] [Abstract][Full Text] [Related]
14. In vivo 19F-NMR spectroscopic study of halothane uptake in rabbit brain. Venkatasubramanian PN; Shen YJ; Wyrwicz AM Biochim Biophys Acta; 1995 Oct; 1245(2):262-8. PubMed ID: 7492587 [TBL] [Abstract][Full Text] [Related]
15. The fluorinated anesthetic halothane as a potential NMR biologic probe. Burt CT; Moore RR; Roberts MF; Brady TJ Biochim Biophys Acta; 1984 Dec; 805(4):375-81. PubMed ID: 6509092 [TBL] [Abstract][Full Text] [Related]
16. 19F in vivo NMR spectroscopy: a new technique to probe fluorinated anesthetic-tissue interactions. Wyrwicz AM Ann N Y Acad Sci; 1991; 625():733-42. PubMed ID: 2058921 [No Abstract] [Full Text] [Related]
17. Determination of halothane distribution in the rat head using 19F NMR technique. Wyrwicz AM; Conboy CB Magn Reson Med; 1989 Feb; 9(2):219-28. PubMed ID: 2716506 [TBL] [Abstract][Full Text] [Related]
19. In vivo 19F nuclear magnetic resonance brain studies of halothane, isoflurane, and desflurane. Rapid elimination and no abundant saturable binding. Litt L; Lockhart S; Cohen Y; Yasuda N; Kim F; Freire B; Laster M; Peterson N; Taheri S; Chang LH Ann N Y Acad Sci; 1991; 625():707-24. PubMed ID: 2058918 [No Abstract] [Full Text] [Related]
20. Clinical characteristics of sevoflurane in children. A comparison with halothane. Sarner JB; Levine M; Davis PJ; Lerman J; Cook DR; Motoyama EK Anesthesiology; 1995 Jan; 82(1):38-46. PubMed ID: 7832332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]