These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 7574469)
1. Skeletal muscle mitochondrial dysfunction in alternating hemiplegia of childhood. Kemp GJ; Taylor DJ; Barnes PR; Wilson J; Radda GK Ann Neurol; 1995 Oct; 38(4):681-4. PubMed ID: 7574469 [TBL] [Abstract][Full Text] [Related]
2. Evidence for mitochondrial dysfunction in patients with alternating hemiplegia of childhood. Arnold DL; Silver K; Andermann F Ann Neurol; 1993 Jun; 33(6):604-7. PubMed ID: 8498840 [TBL] [Abstract][Full Text] [Related]
3. Abnormal mitochondrial function and muscle wasting, but normal contractile efficiency, in haemodialysed patients studied non-invasively in vivo. Kemp GJ; Crowe AV; Anijeet HK; Gong QY; Bimson WE; Frostick SP; Bone JM; Bell GM; Roberts JN Nephrol Dial Transplant; 2004 Jun; 19(6):1520-7. PubMed ID: 15004250 [TBL] [Abstract][Full Text] [Related]
4. Effect of chronic uraemia on skeletal muscle metabolism in man. Thompson CH; Kemp GJ; Taylor DJ; Ledingham JG; Radda GK; Rajagopalan B Nephrol Dial Transplant; 1993; 8(3):218-22. PubMed ID: 8385287 [TBL] [Abstract][Full Text] [Related]
5. Metabolic abnormalities in skeletal muscle of patients receiving zidovudine therapy observed by 31P in vivo magnetic resonance spectroscopy. Sinnwell TM; Sivakumar K; Soueidan S; Jay C; Frank JA; McLaughlin AC; Dalakas MC J Clin Invest; 1995 Jul; 96(1):126-31. PubMed ID: 7615782 [TBL] [Abstract][Full Text] [Related]
6. ADP recovery after a brief ischemic exercise in normal and diseased human muscle--a 31P MRS study. Argov Z; De Stefano N; Arnold DL NMR Biomed; 1996 Jun; 9(4):165-72. PubMed ID: 9015803 [TBL] [Abstract][Full Text] [Related]
7. Reduced mitochondrial adenosine triphosphate synthesis in skeletal muscle in patients with Child-Pugh class B and C cirrhosis. Jacobsen EB; Hamberg O; Quistorff B; Ott P Hepatology; 2001 Jul; 34(1):7-12. PubMed ID: 11431727 [TBL] [Abstract][Full Text] [Related]
8. Uraemic muscle metabolism at rest and during exercise. Thompson CH; Kemp GJ; Barnes PR; Rajagopalan B; Styles P; Taylor DJ; Radda GK Nephrol Dial Transplant; 1994; 9(11):1600-5. PubMed ID: 7870350 [TBL] [Abstract][Full Text] [Related]
9. The duration of infection modifies mitochondrial oxidative capacity in rat skeletal muscle. Mizobata Y; Prechek D; Rounds JD; Robinson V; Wilmore DW; Jacobs DO J Surg Res; 1995 Jul; 59(1):165-73. PubMed ID: 7630122 [TBL] [Abstract][Full Text] [Related]
10. Calf muscle mitochondrial and glycogenolytic ATP synthesis in patients with claudication due to peripheral vascular disease analysed using 31P magnetic resonance spectroscopy. Kemp GJ; Hands LJ; Ramaswami G; Taylor DJ; Nicolaides A; Amato A; Radda GK Clin Sci (Lond); 1995 Dec; 89(6):581-90. PubMed ID: 8549076 [TBL] [Abstract][Full Text] [Related]
11. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. Kemp GJ; Meyerspeer M; Moser E NMR Biomed; 2007 Oct; 20(6):555-65. PubMed ID: 17628042 [TBL] [Abstract][Full Text] [Related]
12. Coenzyme Q10 improves mitochondrial respiration in patients with mitochondrial cytopathies. An in vivo study on brain and skeletal muscle by phosphorous magnetic resonance spectroscopy. Barbiroli B; Frassineti C; Martinelli P; Iotti S; Lodi R; Cortelli P; Montagna P Cell Mol Biol (Noisy-le-grand); 1997 Jul; 43(5):741-9. PubMed ID: 9298596 [TBL] [Abstract][Full Text] [Related]
13. Proton efflux in human skeletal muscle during recovery from exercise. Kemp GJ; Thompson CH; Taylor DJ; Radda GK Eur J Appl Physiol Occup Physiol; 1997; 76(5):462-71. PubMed ID: 9367287 [TBL] [Abstract][Full Text] [Related]
14. The effect of propionyl L-carnitine on skeletal muscle metabolism in renal failure. Thompson CH; Irish AB; Kemp GJ; Taylor DJ; Radda GK Clin Nephrol; 1997 Jun; 47(6):372-8. PubMed ID: 9202867 [TBL] [Abstract][Full Text] [Related]
15. The time course of haemodynamic, autonomic and skeletal muscle metabolic abnormalities following first extensive myocardial infarction in man. Adamopoulos S; Kemp GJ; Thompson CH; Arnolda L; Brunotte F; Stratton JR; Radda GK; Rajagopalan B; Kremastinos DT; Coats AJ J Mol Cell Cardiol; 1999 Oct; 31(10):1913-26. PubMed ID: 10525428 [TBL] [Abstract][Full Text] [Related]
16. Abnormal ATP turnover in rat leg muscle during exercise and recovery following myocardial infarction. Thompson CH; Kemp GJ; Rajagopalan B; Radda GK Cardiovasc Res; 1995 Mar; 29(3):344-9. PubMed ID: 7781009 [TBL] [Abstract][Full Text] [Related]
17. Phosphorus magnetic resonance spectroscopy of patients with mitochondrial cytopathies demonstrates decreased levels of brain phosphocreatine. Eleff SM; Barker PB; Blackband SJ; Chatham JC; Lutz NW; Johns DR; Bryan RN Ann Neurol; 1990 Jun; 27(6):626-30. PubMed ID: 2360799 [TBL] [Abstract][Full Text] [Related]
18. [Magnetic resonance spectroscopy in fibromyalgia. A study of phosphate-31 spectra from skeletal muscles during rest and after exercise]. Jacobsen S; Jensen KE; Thomsen C; Danneskiold-Samsøe B; Henriksen O Ugeskr Laeger; 1994 Nov; 156(46):6841-4. PubMed ID: 7839499 [TBL] [Abstract][Full Text] [Related]
19. A prospective study to evaluate the impact of 31P-MRS to determinate mitochondrial dysfunction in skeletal muscle of ALS patients. Grehl T; Fischer S; Müller K; Malin JP; Zange J Amyotroph Lateral Scler; 2007 Feb; 8(1):4-8. PubMed ID: 17364428 [TBL] [Abstract][Full Text] [Related]
20. Non-invasive assessment of oxidative capacity in young Indian men and women: a 31P magnetic resonance spectroscopy study. Rana P; Varshney A; Devi MM; Kumar P; Khushu S Indian J Biochem Biophys; 2008 Aug; 45(4):263-8. PubMed ID: 18788477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]