BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7574594)

  • 21. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon.
    Olivera ER; Miñambres B; García B; Muñiz C; Moreno MA; Ferrández A; Díaz E; García JL; Luengo JM
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6419-24. PubMed ID: 9600981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and identification of styrene-degrading Corynebacterium strains, and their styrene metabolism.
    Itoh N; Yoshida K; Okada K
    Biosci Biotechnol Biochem; 1996 Nov; 60(11):1826-30. PubMed ID: 8987859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions.
    Nikodinovic-Runic J; Flanagan M; Hume AR; Cagney G; O'Connor KE
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3348-3361. PubMed ID: 19608612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3.
    O'Leary ND; O'Connor KE; Ward P; Goff M; Dobson AD
    Appl Environ Microbiol; 2005 Aug; 71(8):4380-7. PubMed ID: 16085828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catabolism of aromatics in Pseudomonas putida U. Formal evidence that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways.
    Olivera ER; Reglero A; Martínez-Blanco H; Fernández-Medarde A; Moreno MA; Luengo JM
    Eur J Biochem; 1994 Apr; 221(1):375-81. PubMed ID: 8168524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate.
    Schleissner C; Olivera ER; Fernández-Valverde M; Luengo JM
    J Bacteriol; 1994 Dec; 176(24):7667-76. PubMed ID: 8002592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol.
    Machas MS; McKenna R; Nielsen DR
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28799719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial transformations of styrene and [14C] styrene in soil and enrichment cultures.
    Sielicki M; Focht DD; Martin JP
    Appl Environ Microbiol; 1978 Jan; 35(1):124-8. PubMed ID: 74979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymology of oxidation of tropic acid to phenylacetic acid in metabolism of atropine by Pseudomonas sp. strain AT3.
    Long MT; Bartholomew BA; Smith MJ; Trudgill PW; Hopper DJ
    J Bacteriol; 1997 Feb; 179(4):1044-50. PubMed ID: 9023182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis.
    Gursky LJ; Nikodinovic-Runic J; Feenstra KA; O'Connor KE
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):995-1004. PubMed ID: 19568744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 32. Characterization of the last step of the aerobic phenylacetic acid degradation pathway.
    Nogales J; Macchi R; Franchi F; Barzaghi D; Fernández C; García JL; Bertoni G; Díaz E
    Microbiology (Reading); 2007 Feb; 153(Pt 2):357-365. PubMed ID: 17259607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of catabolic cassettes for styrene biodegradation.
    Lorenzo P; Alonso S; Velasco A; Díaz E; García JL; Perera J
    Antonie Van Leeuwenhoek; 2003; 84(1):17-24. PubMed ID: 12906358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenylacetyl-coenzyme A is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U.
    García B; Olivera ER; Miñambres B; Carnicero D; Muñiz C; Naharro G; Luengo JM
    Appl Environ Microbiol; 2000 Oct; 66(10):4575-8. PubMed ID: 11010921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterologous production of different styrene oxide isomerases for the highly efficient synthesis of phenylacetaldehyde.
    Oelschlägel M; Richter L; Stuhr A; Hofmann S; Schlömann M
    J Biotechnol; 2017 Jun; 252():43-49. PubMed ID: 28472670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST.
    Beltrametti F; Marconi AM; Bestetti G; Colombo C; Galli E; Ruzzi M; Zennaro E
    Appl Environ Microbiol; 1997 Jun; 63(6):2232-9. PubMed ID: 9172343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-Degrading Xanthobacter Strain 124X.
    Hartmans S; Smits JP; van der Werf MJ; Volkering F; de Bont JA
    Appl Environ Microbiol; 1989 Nov; 55(11):2850-5. PubMed ID: 16348047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid.
    Sparnins VL; Chapman PJ; Dagley S
    J Bacteriol; 1974 Oct; 120(1):159-67. PubMed ID: 4420192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase.
    Kantz A; Gassner GT
    Biochemistry; 2011 Feb; 50(4):523-32. PubMed ID: 21166448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular 2-keto-3-deoxy-6-phosphogluconate is the signal for carbon catabolite repression of phenylacetic acid metabolism in Pseudomonas putida KT2440.
    Kim J; Yeom J; Jeon CO; Park W
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2420-2428. PubMed ID: 19406896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.