These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7574594)

  • 41. Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86.
    Basu A; Dixit SS; Phale PS
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):579-85. PubMed ID: 12687299
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism.
    Samanta SK; Bhushan B; Jain RK
    Appl Microbiol Biotechnol; 2001 May; 55(5):627-31. PubMed ID: 11414331
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure-mechanism relationships in hemoproteins. Oxygenations catalyzed by chloroperoxidase and horseradish peroxidase.
    Ortiz de Montellano PR; Choe YS; DePillis G; Catalano CE
    J Biol Chem; 1987 Aug; 262(24):11641-6. PubMed ID: 3624229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bacterial phenylalanine and phenylacetate catabolic pathway revealed.
    Teufel R; Mascaraque V; Ismail W; Voss M; Perera J; Eisenreich W; Haehnel W; Fuchs G
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14390-5. PubMed ID: 20660314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens ST.
    Marconi AM; Beltrametti F; Bestetti G; Solinas F; Ruzzi M; Galli E; Zennaro E
    Appl Environ Microbiol; 1996 Jan; 62(1):121-7. PubMed ID: 8572689
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Degradation of chlorotoluenes by in vivo constructed hybrid strains: problems of enzyme specificity, induction and prevention of meta-pathway.
    Brinkmann U; Reineke W
    FEMS Microbiol Lett; 1992 Sep; 75(1):81-7. PubMed ID: 1526468
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerant Pseudomonas sp. strain VLB120DeltaC.
    Park JB; Bühler B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2007 Dec; 98(6):1219-29. PubMed ID: 17514751
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradation of p-nitrophenol by P. putida.
    Kulkarni M; Chaudhari A
    Bioresour Technol; 2006 May; 97(8):982-8. PubMed ID: 16009549
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440.
    Tan C; Zhang X; Zhu Z; Xu M; Yang T; Osire T; Yang S; Rao Z
    Microb Cell Fact; 2019 Jan; 18(1):12. PubMed ID: 30678678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Styrene oxide isomerase of Rhodococcus opacus 1CP, a highly stable and considerably active enzyme.
    Oelschlägel M; Gröning JA; Tischler D; Kaschabek SR; Schlömann M
    Appl Environ Microbiol; 2012 Jun; 78(12):4330-7. PubMed ID: 22504818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene.
    Haro MA; de Lorenzo V
    J Biotechnol; 2001 Feb; 85(2):103-13. PubMed ID: 11165359
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas.
    Kuhn D; Bühler B; Schmid A
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1125-33. PubMed ID: 22526330
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization of phenylacetaldehyde reductase from a styrene-assimilating Corynebacterium strain, ST-10.
    Itoh N; Morihama R; Wang J; Okada K; Mizuguchi N
    Appl Environ Microbiol; 1997 Oct; 63(10):3783-8. PubMed ID: 9327541
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of styrene oxide from styrene by a recombinant
    Doukyu N; Iida S
    Biosci Biotechnol Biochem; 2020 Jul; 84(7):1513-1520. PubMed ID: 32310021
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradative capability of Pseudomonas putida on acetonitrile.
    Chapatwala KD; Babu GR; Dudley C; Williams R; Aremu K
    Appl Biochem Biotechnol; 1993; 39-40():655-66. PubMed ID: 8323268
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mutations at the putative active cavity of styrene monooxygenase: enhanced activity and reversed enantioselectivity.
    Lin H; Tang DF; Ahmed AA; Liu Y; Wu ZL
    J Biotechnol; 2012 Oct; 161(3):235-41. PubMed ID: 22796094
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Control of meta-cleavage degradation of 4-hydroxyphenylacetate in Pseudomonas putida.
    Barbour MG; Bayly RC
    J Bacteriol; 1981 Sep; 147(3):844-50. PubMed ID: 6895079
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Less is more: reduced catechol production permits Pseudomonas putida F1 to grow on styrene.
    George KW; Hay A
    Microbiology (Reading); 2012 Nov; 158(Pt 11):2781-2788. PubMed ID: 22902727
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidation of nitrotoluenes by toluene dioxygenase: evidence for a monooxygenase reaction.
    Robertson JB; Spain JC; Haddock JD; Gibson DT
    Appl Environ Microbiol; 1992 Aug; 58(8):2643-8. PubMed ID: 1514810
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel auto-inducing expression systems for the development of whole-cell biocatalysts.
    Di Gennaro P; Ferrara S; Bestetti G; Sello G; Solera D; Galli E; Renzi F; Bertoni G
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):617-25. PubMed ID: 18465124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.