These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7574594)

  • 61. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons.
    Tobin KM; O'Connor KE
    FEMS Microbiol Lett; 2005 Dec; 253(1):111-8. PubMed ID: 16260095
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biodegradation characteristics of quinoline by Pseudomonas putida.
    Lin Q; Jianlong W
    Bioresour Technol; 2010 Oct; 101(19):7683-6. PubMed ID: 20554200
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The critical roles of propanethiol oxidoreductase and sulfide-quinone oxidoreductase in the propanethiol catabolism pathway in
    Qiao P; Ning L; Chen J; Tang Y; Zhao R; Chen G; Ye Q; Zhou T; Chen J; Zhong W
    Appl Environ Microbiol; 2024 Feb; 90(2):e0195923. PubMed ID: 38193681
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Production of a recombinant membrane protein in an
    Oelschlägel M; Heiland C; Schlömann M; Tischler D
    Biotechnol Rep (Amst); 2015 Sep; 7():38-43. PubMed ID: 28626713
    [TBL] [Abstract][Full Text] [Related]  

  • 65. On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2.
    Heine T; Zimmerling J; Ballmann A; Kleeberg SB; Rückert C; Busche T; Winkler A; Kalinowski J; Poetsch A; Scholtissek A; Oelschlägel M; Schmidt G; Tischler D
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475871
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Degradation of chloroanilines by toluene dioxygenase from Pseudomonas putida T57.
    Nitisakulkan T; Oku S; Kudo D; Nakashimada Y; Tajima T; Vangnai AS; Kato J
    J Biosci Bioeng; 2014 Mar; 117(3):292-7. PubMed ID: 24064298
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of a second functional gene cluster for the catabolism of phenylacetic acid in Pseudomonas sp. strain Y2.
    Bartolomé-Martín D; Martínez-García E; Mascaraque V; Rubio J; Perera J; Alonso S
    Gene; 2004 Oct; 341():167-79. PubMed ID: 15474299
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The Regulation of para-Nitrophenol Degradation in Pseudomonas putida DLL-E4.
    Chen Q; Tu H; Luo X; Zhang B; Huang F; Li Z; Wang J; Shen W; Wu J; Cui Z
    PLoS One; 2016; 11(5):e0155485. PubMed ID: 27191401
    [TBL] [Abstract][Full Text] [Related]  

  • 69. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
    Bühler B; Park JB; Blank LM; Schmid A
    Appl Environ Microbiol; 2008 Mar; 74(5):1436-46. PubMed ID: 18192422
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources.
    Wang Q; Nomura CT
    J Biosci Bioeng; 2010 Dec; 110(6):653-9. PubMed ID: 20807680
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Yield prediction and stoichiometry of multi-step biodegradation reactions involving oxygenation.
    Yuan Z; VanBriesen JM
    Biotechnol Bioeng; 2002 Oct; 80(1):100-13. PubMed ID: 12209791
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.
    Choudhary A; Modak A; Apte SK; Phale PS
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Growth of Pseudomonas putida F1 on styrene requires increased catechol-2,3-dioxygenase activity, not a new hydrolase.
    George KW; Kagle J; Junker L; Risen A; Hay AG
    Microbiology (Reading); 2011 Jan; 157(Pt 1):89-98. PubMed ID: 20929952
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Initial steps in the degradation of 3,4-dimethylbenzoic acid by Pseudomonas putida strain DMB.
    Baggi G; Bernasconi S; Zangrossi M
    FEMS Microbiol Lett; 1996 Apr; 137(2-3):129-34. PubMed ID: 8998974
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis.
    Tischler D; Kumpf A; Eggerichs D; Heine T
    Enzymes; 2020; 47():399-425. PubMed ID: 32951830
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase.
    Kantz A; Chin F; Nallamothu N; Nguyen T; Gassner GT
    Arch Biochem Biophys; 2005 Oct; 442(1):102-16. PubMed ID: 16140257
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of the Glutathione
    Lienkamp AC; Burnik J; Heine T; Hofmann E; Tischler D
    Microbiol Spectr; 2021 Sep; 9(1):e0047421. PubMed ID: 34319142
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates.
    Rentz JA; Alvarez PJ; Schnoor JL
    Environ Microbiol; 2004 Jun; 6(6):574-83. PubMed ID: 15142245
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1.
    Felux AK; Spiteller D; Klebensberger J; Schleheck D
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4298-305. PubMed ID: 26195800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.