These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 7574606)
21. Phylogenetic analysis of a dataset of fungal 5.8S rDNA sequences shows that highly divergent copies of internal transcribed spacers reported from Scutellospora castanea are of ascomycete origin. Redecker D; Hijri M; Dulieu H; Sanders IR Fungal Genet Biol; 1999 Dec; 28(3):238-44. PubMed ID: 10669588 [TBL] [Abstract][Full Text] [Related]
22. Comparative transcriptome profiling of the early infection of wheat roots by Gaeumannomyces graminis var. tritici. Yang L; Xie L; Xue B; Goodwin PH; Quan X; Zheng C; Liu T; Lei Z; Yang X; Chao Y; Wu C PLoS One; 2015; 10(4):e0120691. PubMed ID: 25875107 [TBL] [Abstract][Full Text] [Related]
23. Variation in Sensitivity of Gaeumannomyces graminis to Antibiotics Produced by Fluorescent Pseudomonas spp. and Effect on Biological Control of Take-All of Wheat. Mazzola M; Fujimoto DK; Thomashow LS; Cook RJ Appl Environ Microbiol; 1995 Jul; 61(7):2554-9. PubMed ID: 16535070 [TBL] [Abstract][Full Text] [Related]
24. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici. Zhang DD; Guo XJ; Wang YJ; Gao TG; Zhu BC Lett Appl Microbiol; 2017 Dec; 65(6):512-519. PubMed ID: 28977681 [TBL] [Abstract][Full Text] [Related]
25. Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18s rDNA. Kowalchuk GA; Gerards S; Woldendorp JW Appl Environ Microbiol; 1997 Oct; 63(10):3858-65. PubMed ID: 9327549 [TBL] [Abstract][Full Text] [Related]
26. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Daval S; Lebreton L; Gazengel K; Boutin M; Guillerm-Erckelboudt AY; Sarniguet A Mol Plant Pathol; 2011 Dec; 12(9):839-54. PubMed ID: 21726382 [TBL] [Abstract][Full Text] [Related]
27. Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping. Lebreton L; Lucas P; Dugas F; Guillerm AY; Schoeny A; Sarniguet A Environ Microbiol; 2004 Nov; 6(11):1174-85. PubMed ID: 15479250 [TBL] [Abstract][Full Text] [Related]
28. Avenacin Production in Creeping Bentgrass (Agrostis stolonifera) and Its Influence on the Host Range of Gaeumannomyces graminis. Thomas SL; Bonello P; Lipps PE; Boehm MJ Plant Dis; 2006 Jan; 90(1):33-38. PubMed ID: 30786471 [TBL] [Abstract][Full Text] [Related]
29. Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus. Litvintseva AP; Henson JM Appl Environ Microbiol; 2002 Mar; 68(3):1305-11. PubMed ID: 11872481 [TBL] [Abstract][Full Text] [Related]
30. Ribosomal genes of Histoplasma capsulatum var. duboisii and var. farciminosum. Okeke CN; Kappe R; Zakikhani S; Nolte O; Sonntag HG Mycoses; 1998 Nov; 41(9-10):355-62. PubMed ID: 9916456 [TBL] [Abstract][Full Text] [Related]
31. Sequence complexities of the nuclear and mitochondrial genomes of the take-all fungus, Gaeumannomyces graminis var. tritici. McFadden JJ; Buck KW J Gen Microbiol; 1983 Nov; 129(11):3515-7. PubMed ID: 6663284 [TBL] [Abstract][Full Text] [Related]
32. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. Barret M; Frey-Klett P; Boutin M; Guillerm-Erckelboudt AY; Martin F; Guillot L; Sarniguet A New Phytol; 2009 Jan; 181(2):435-447. PubMed ID: 19121038 [TBL] [Abstract][Full Text] [Related]
33. Molecular phylogeny of the Leptosphaeria maculans-L. biglobosa species complex. Mendes-Pereira E; Balesdent MH; Brun H; Rouxel T Mycol Res; 2003 Nov; 107(Pt 11):1287-304. PubMed ID: 15000231 [TBL] [Abstract][Full Text] [Related]
34. [Relations between the fungi Gaeumannomyces graminis and Phialophora radicicola when growing together outside the host (author's transl)]. Novotný J Zentralbl Bakteriol Naturwiss; 1979; 134(5):419-22. PubMed ID: 543347 [TBL] [Abstract][Full Text] [Related]
35. [Diagnostics of phytopathogen fungi Septoria tritici and Stagonospora nodorum by fluorescent amplification-based specific hybridization (FLASH) PCR]. Abramova SL; Riazantsev DIu; Voinova TM; Zavriev SK Bioorg Khim; 2008; 34(1):107-13. PubMed ID: 18365745 [TBL] [Abstract][Full Text] [Related]
36. The determination of the partial 18 S ribosomal DNA sequences of Cordyceps species. Ito Y; Hirano T Lett Appl Microbiol; 1997 Oct; 25(4):239-42. PubMed ID: 9351269 [TBL] [Abstract][Full Text] [Related]
37. Inhabiting plant roots, nematodes, and truffles-Polyphilus, a new helotialean genus with two globally distributed species. Ashrafi S; Knapp DG; Blaudez D; Chalot M; Maciá-Vicente JG; Zagyva I; Dababat AA; Maier W; Kovács GM Mycologia; 2018; 110(2):286-299. PubMed ID: 29771641 [TBL] [Abstract][Full Text] [Related]
38. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. Thomashow LS; Weller DM J Bacteriol; 1988 Aug; 170(8):3499-508. PubMed ID: 2841289 [TBL] [Abstract][Full Text] [Related]
39. Sensitivity to silthiofam, tebuconazole and difenoconazole of Gaeumannomyces graminis var. tritici isolates from China. Yun Y; Yu F; Wang N; Chen H; Yin Y; Ma Z Pest Manag Sci; 2012 Aug; 68(8):1156-63. PubMed ID: 22411909 [TBL] [Abstract][Full Text] [Related]