These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7574627)

  • 1. Chloroform degradation in methanogenic methanol enrichment cultures and by Methanosarcina barkeri 227.
    Bagley DM; Gossett JM
    Appl Environ Microbiol; 1995 Sep; 61(9):3195-201. PubMed ID: 7574627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nickel, cobalt, and iron on methanogenesis from methanol and cometabolic conversion of 1,2-dichloroethene by Methanosarcina barkeri.
    Paulo LM; Hidayat MR; Moretti G; Stams AJM; Sousa DZ
    Biotechnol Appl Biochem; 2020 Sep; 67(5):744-750. PubMed ID: 32282086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive dechlorination of 1,2-dichloroethane and chloroethane by cell suspensions of methanogenic bacteria.
    Holliger C; Schraa G; Stams AJ; Zehnder AJ
    Biodegradation; 1990; 1(4):253-61. PubMed ID: 1368471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic restrictions determine ammonia tolerance of methanogenic pathways in Methanosarcina barkeri.
    Yi Y; Dolfing J; Jin G; Fang X; Han W; Liu L; Tang Y; Cheng L
    Water Res; 2023 Apr; 232():119664. PubMed ID: 36775717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Riboflavin- and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium.
    Guerrero-Barajas C; Field JA
    Biotechnol Bioeng; 2005 Mar; 89(5):539-50. PubMed ID: 15669086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of unitrophic and mixotrophic substrate metabolism by acetate-adapted strain of Methanosarcina barkeri.
    Krzycki JA; Wolkin RH; Zeikus JG
    J Bacteriol; 1982 Jan; 149(1):247-54. PubMed ID: 6798021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass-spectrometric studies of the interrelations among hydrogenase, carbon monoxide dehydrogenase, and methane-forming activities in pure and mixed cultures of Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Methanosarcina barkeri.
    Rajagopal BS; Lespinat PA; Fauque G; LeGall J; Berlier YM
    Appl Environ Microbiol; 1989 Sep; 55(9):2123-9. PubMed ID: 2508553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri.
    Hippe H; Caspari D; Fiebig K; Gottschalk G
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):494-8. PubMed ID: 284366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethane production by Methanosarcina barkeri during growth in ethanol supplemented medium.
    Belay N; Daniels L
    Antonie Van Leeuwenhoek; 1988; 54(2):113-25. PubMed ID: 3395108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different substrate regimes determine transcriptional profiles and gene co-expression in Methanosarcina barkeri (DSM 800).
    Lin Q; Fang X; Ho A; Li J; Yan X; Tu B; Li C; Li J; Yao M; Li X
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7303-7316. PubMed ID: 28828628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of corrinoid antagonists on methanogen metabolism.
    Kenealy W; Zeikus JG
    J Bacteriol; 1981 Apr; 146(1):133-40. PubMed ID: 6783613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methyl-coenzyme M, an intermediate in methanogenic dissimilation of C1 compounds by Methanosarcina barkeri.
    Shapiro S; Wolfe RS
    J Bacteriol; 1980 Feb; 141(2):728-34. PubMed ID: 6444945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-dependent incorporation of carbon and hydrogen for lipid biosynthesis by Methanosarcina barkeri.
    Wu W; Meador TB; Könneke M; Elvert M; Wegener G; Hinrichs KU
    Environ Microbiol Rep; 2020 Oct; 12(5):555-567. PubMed ID: 32783290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway.
    Welander PV; Metcalf WW
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10664-9. PubMed ID: 16024727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methanogenic pathways in Methanosphaera stadtmanae.
    van de Wijngaard WM; Creemers J; Vogels GD; van der Drift C
    FEMS Microbiol Lett; 1991 May; 64(2-3):207-11. PubMed ID: 1909277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions.
    Freedman DL; Gossett JM
    Appl Environ Microbiol; 1991 Oct; 57(10):2847-57. PubMed ID: 1746945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative contributions of Dehalobacter and zerovalent iron in the degradation of chlorinated methanes.
    Lee M; Wells E; Wong YK; Koenig J; Adrian L; Richnow HH; Manefield M
    Environ Sci Technol; 2015 Apr; 49(7):4481-9. PubMed ID: 25764054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Conservation via Hydrogen Cycling in the Methanogenic Archaeon Methanosarcina barkeri.
    Kulkarni G; Mand TD; Metcalf WW
    mBio; 2018 Jul; 9(4):. PubMed ID: 29970471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde.
    Blaut M; Müller V; Fiebig K; Gottschalk G
    J Bacteriol; 1985 Oct; 164(1):95-101. PubMed ID: 3930472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic degradation of toluene and o-xylene by a methanogenic consortium.
    Edwards EA; Grbić-Galić D
    Appl Environ Microbiol; 1994 Jan; 60(1):313-22. PubMed ID: 8117084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.