These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7574679)

  • 1. Reduction of quinones and radicals by a plasma membrane redox system of Phanerochaete chrysosporium.
    Stahl JD; Rasmussen SJ; Aust SD
    Arch Biochem Biophys; 1995 Sep; 322(1):221-7. PubMed ID: 7574679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of a transplasma membrane redox system of Phanerochaete chrysosporium.
    Stahl JD; Aust SD
    Arch Biochem Biophys; 1995 Jul; 320(2):369-74. PubMed ID: 7625845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma membrane dependent reduction of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium.
    Stahl JD; Aust SD
    Biochem Biophys Res Commun; 1993 Apr; 192(2):471-6. PubMed ID: 8484759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The interaction of pyruvate decarboxylase with the quinone-ferricyanide oxidative system].
    Vovk AI; Parkhomenko IuM; Murav'eva IV; Protasova ZS
    Ukr Biokhim Zh (1978); 1996; 68(2):58-63. PubMed ID: 9005663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1,4-Benzoquinone reductase from basidiomycete Phanerochaete chrysosporium: spectral and kinetic analysis.
    Brock BJ; Gold MH
    Arch Biochem Biophys; 1996 Jul; 331(1):31-40. PubMed ID: 8660680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism and detoxification of TNT by Phanerochaete chrysosporium.
    Stahl JD; Aust SD
    Biochem Biophys Res Commun; 1993 Apr; 192(2):477-82. PubMed ID: 8484760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction, isolation, and characterization of two laccases from the white rot basidiomycete Coriolopsis rigida.
    Saparrat MC; Guillén F; Arambarri AM; Martínez AT; Martínez MJ
    Appl Environ Microbiol; 2002 Apr; 68(4):1534-40. PubMed ID: 11916665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductions catalyzed by a quinone and peroxidases from Phanerochaete chrysosporium.
    Rasmussen SJ; Chung N; Khindaria A; Grover TA; Aust SD
    Arch Biochem Biophys; 1995 Jul; 320(2):243-9. PubMed ID: 7625830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium.
    Valli K; Wariishi H; Gold MH
    J Bacteriol; 1992 Apr; 174(7):2131-7. PubMed ID: 1551837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium.
    Valli K; Gold MH
    J Bacteriol; 1991 Jan; 173(1):345-52. PubMed ID: 1987125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of ligninase from Phanerochaete chrysosporium and their possible applications.
    Tien M
    Crit Rev Microbiol; 1987; 15(2):141-68. PubMed ID: 3322681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling.
    Gómez-Toribio V; García-Martín AB; Martínez MJ; Martínez AT; Guillén F
    Appl Environ Microbiol; 2009 Jun; 75(12):3944-53. PubMed ID: 19376892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical.
    Guillén F; Martínez MJ; Muñoz C; Martínez AT
    Arch Biochem Biophys; 1997 Mar; 339(1):190-9. PubMed ID: 9056249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread ability of fungi to drive quinone redox cycling for biodegradation.
    Krueger MC; Bergmann M; Schlosser D
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium.
    Hammel KE; Gai WZ; Green B; Moen MA
    Appl Environ Microbiol; 1992 Jun; 58(6):1832-8. PubMed ID: 1622259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformations of arylpropane lignin model compounds by a lignin peroxidase of the white-rot fungus Phanerochaete chrysosporium.
    Huynh VB; Paszczyński A; Olson P; Crawford R
    Arch Biochem Biophys; 1986 Oct; 250(1):186-96. PubMed ID: 3767372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do erythrocytes contribute to the ABTS* scavenging capacity of blood?
    Sadowska-Woda I; Bartosz G
    Free Radic Res; 2013 Jan; 47(1):35-43. PubMed ID: 23025487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phanerochaete chrysosporium Multienzyme Catabolic System for in Vivo Modification of Synthetic Lignin to Succinic Acid.
    Hong CY; Ryu SH; Jeong H; Lee SS; Kim M; Choi IG
    ACS Chem Biol; 2017 Jul; 12(7):1749-1759. PubMed ID: 28463479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse Yellow 3 degradation.
    Spadaro JT; Renganathan V
    Arch Biochem Biophys; 1994 Jul; 312(1):301-7. PubMed ID: 8031141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor.
    Leitner C; Volc J; Haltrich D
    Appl Environ Microbiol; 2001 Aug; 67(8):3636-44. PubMed ID: 11472941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.