BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7575558)

  • 1. Ferrochelatase binds the iron-responsive element present in the erythroid 5-aminolevulinate synthase mRNA.
    Ferreira GC
    Biochem Biophys Res Commun; 1995 Sep; 214(3):875-8. PubMed ID: 7575558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythroid 5-aminolevulinate synthase, ferrochelatase and DMT1 expression in erythroid progenitors: differential pathways for erythropoietin and iron-dependent regulation.
    Zoller H; Decristoforo C; Weiss G
    Br J Haematol; 2002 Aug; 118(2):619-26. PubMed ID: 12139757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-responsive element-binding protein mRNA levels during erythroid differentiation of murine erythroleukemia cells.
    Fuchs O
    Neoplasma; 1995; 42(4):179-85. PubMed ID: 7659183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of heme biosynthesis: distinct regulatory features in erythroid cells.
    Ponka P; Schulman HM
    Stem Cells; 1993 May; 11 Suppl 1():24-35. PubMed ID: 8318916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biphasic ordered induction of heme synthesis in differentiating murine erythroleukemia cells: role of erythroid 5-aminolevulinate synthase.
    Lake-Bullock H; Dailey HA
    Mol Cell Biol; 1993 Nov; 13(11):7122-32. PubMed ID: 8413301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of arginine 439 in substrate binding of 5-aminolevulinate synthase.
    Tan D; Harrison T; Hunter GA; Ferreira GC
    Biochemistry; 1998 Feb; 37(6):1478-84. PubMed ID: 9484217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site of 5-aminolevulinate synthase resides at the subunit interface. Evidence from in vivo heterodimer formation.
    Tan D; Ferreira GC
    Biochemistry; 1996 Jul; 35(27):8934-41. PubMed ID: 8688429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translational control of erythroid delta-aminolevulinate synthase in immature human erythroid cells by heme.
    Smith SJ; Cox TM
    Cell Mol Biol (Noisy-le-grand); 1997 Feb; 43(1):103-14. PubMed ID: 9074795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In ferrochelatase-deficient protoporphyria patients, ALAS2 expression is enhanced and erythrocytic protoporphyrin concentration correlates with iron availability.
    Barman-Aksözen J; Minder EI; Schubiger C; Biolcati G; Schneider-Yin X
    Blood Cells Mol Dis; 2015 Jan; 54(1):71-7. PubMed ID: 25179834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme synthase (ferrochelatase) catalyzes the removal of iron from heme and demetalation of metalloporphyrins.
    Taketani S; Ishigaki M; Mizutani A; Uebayashi M; Numata M; Ohgari Y; Kitajima S
    Biochemistry; 2007 Dec; 46(51):15054-61. PubMed ID: 18044970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells.
    Melefors O; Goossen B; Johansson HE; Stripecke R; Gray NK; Hentze MW
    J Biol Chem; 1993 Mar; 268(8):5974-8. PubMed ID: 8449958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-transcriptional regulation of the expression of ferrochelatase by its variant mRNA.
    Sakaino M; Kataoka T; Taketani S
    J Biochem; 2009 Jun; 145(6):733-8. PubMed ID: 19251765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenic rescue of erythroid 5-aminolevulinate synthase-deficient mice results in the formation of ring sideroblasts and siderocytes.
    Nakajima O; Okano S; Harada H; Kusaka T; Gao X; Hosoya T; Suzuki N; Takahashi S; Yamamoto M
    Genes Cells; 2006 Jun; 11(6):685-700. PubMed ID: 16716198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferrochelatase, glutathione peroxidase and transferrin receptor mRNA synthesis and levels in mouse erythroleukemia cells.
    Fuchs O
    Stem Cells; 1993 May; 11 Suppl 1():13-23. PubMed ID: 8318915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of iron supply in the regulation of 5-aminolevulinate synthase mRNA levels in murine erythroleukemia cells.
    Fuchs O; Ponka P
    Neoplasma; 1996; 43(1):31-6. PubMed ID: 8843957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythroid 5-aminolevulinate synthase and X-linked sideroblastic anemia.
    Ferreira GC
    J Fla Med Assoc; 1993 Jul; 80(7):481-3. PubMed ID: 8089650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the genes for heme pathway enzymes in erythroid and in non-erythroid cells.
    Sassa S
    Int J Cell Cloning; 1990 Jan; 8(1):10-26. PubMed ID: 2403580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of iron-responsive element-binding protein and its analytical characterization as the RNA-binding form, devoid of an iron-sulfur cluster.
    Basilion JP; Kennedy MC; Beinert H; Massinople CM; Klausner RD; Rouault TA
    Arch Biochem Biophys; 1994 Jun; 311(2):517-22. PubMed ID: 8203918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aspartate-279 in aminolevulinate synthase affects enzyme catalysis through enhancing the function of the pyridoxal 5'-phosphate cofactor.
    Gong J; Hunter GA; Ferreira GC
    Biochemistry; 1998 Mar; 37(10):3509-17. PubMed ID: 9521672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of haem biosynthesis in normoblastic erythropoiesis: role of 5-aminolaevulinic acid synthase and ferrochelatase.
    Houston T; Moore MR; McColl KE; Fitzsimons EJ
    Biochim Biophys Acta; 1994 Sep; 1201(1):85-93. PubMed ID: 7918587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.