These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 757590)

  • 1. Separation and detection of small amounts of catecholamines by high-performance liquid chromatography.
    Okamoto KI; Ishida Y; Asai K
    J Chromatogr; 1978 Dec; 167():205-17. PubMed ID: 757590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of urinary free noradrenaline by reversed-phase high-performance liquid chromatography with on-line extraction and fluorescence derivatization.
    Nozaki O; Ohba Y
    J Chromatogr; 1990 Aug; 515():621-7. PubMed ID: 2283382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid and highly sensitive method for determination of picogram levels of norepinephrine and epinephrine in tissues by high-performance liquid chromatography.
    Yui Y; Itokawa Y; Kawai C
    Anal Biochem; 1980 Oct; 108(1):11-5. PubMed ID: 7457849
    [No Abstract]   [Full Text] [Related]  

  • 4. High-performance liquid chromatographic analysis of biogenic amines in biological materials as o-phthalaldehyde derivatives.
    Davis TP; Gehrke CW; Gehrke CW; Cunningham TD; Kuo KC; Gerhardt KO; Johnson HD; Williams CH
    J Chromatogr; 1979 Mar; 162(3):293-310. PubMed ID: 118977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid-chromatographic determination of norepinephrine and epinephrine in human plasma.
    Yui Y; Fujita T; Yamamoto T; Itokawa Y; Kawai C
    Clin Chem; 1980 Feb; 26(2):194-6. PubMed ID: 7353264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel post-column derivatization method for the fluorimetric determination of norepinephrine and epinephrine.
    Nimura N; Ishida K; Kinoshita T
    J Chromatogr; 1980 Dec; 221(2):249-55. PubMed ID: 7217294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid chromatography/luminescence techniques.
    Mori K
    Life Sci; 1987 Aug; 41(7):901-4. PubMed ID: 3613851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New automated fluorometric methods for estimation of small amounts of adrenaline and noradrenaline.
    Viktora JK; Baukal A; Wolff FW
    Anal Biochem; 1968 Jun; 23(3):513-28. PubMed ID: 4968727
    [No Abstract]   [Full Text] [Related]  

  • 9. Measurement of catecholamines in biological fluids by high-performance liquid chromatography: a comparison of fluorimetric with electrochemical detection.
    Causon RC; Carruthers ME
    J Chromatogr; 1982 May; 229(2):301-9. PubMed ID: 7096468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of catecholamines in tissue and body fluids using microbore HPLC with amperometric detection.
    Durkin TA; Caliguri EJ; Mefford IN; Lake DM; Macdonald IA; Sundstrom E; Jonsson G
    Life Sci; 1985 Nov; 37(19):1803-10. PubMed ID: 3932804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance liquid chromatographic analysis of catecholamines in biological samples by liquid/liquid extraction prepurification.
    Tsuchiya H; Hayashi T
    J Pharmacol Methods; 1990 Mar; 23(1):21-30. PubMed ID: 2304349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the O-methylated metabolites of isoprenaline, adrenaline and noradrenaline in physiological salt solutions by high-performance liquid chromatography with electrochemical detection.
    Bryan LJ; O'Donnell SR
    J Chromatogr; 1989 Jan; 487(1):29-39. PubMed ID: 2715273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of catecholamines in rat heart tissue and plasma samples by liquid chromatography with electrochemical detection.
    Eriksson BM; Persson BA
    J Chromatogr; 1982 Mar; 228():143-54. PubMed ID: 7076741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automated high-performance liquid chromatographic assay for the analysis of free catecholamines in urine.
    Said R; Robinet D; Barbier C; Sartre J; Huguet C
    J Chromatogr; 1990 Aug; 530(1):11-8. PubMed ID: 2277100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catecholamine analysis with strong cation exchange column liquid chromatography-peroxyoxalate chemiluminescence reaction detection.
    Tsunoda M; Funatsu T
    Anal Bioanal Chem; 2012 Jan; 402(3):1393-7. PubMed ID: 22076313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of catecholamines in skin and serum.
    Hansson C; Rosengren E
    Acta Derm Venereol; 1979; 59(2):175-6. PubMed ID: 84499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated measurement of catecholamines in urine, plasma and tissue homogenates by high-performance liquid chromatography with fluorometric detection.
    Mori K
    J Chromatogr; 1981 Nov; 218():631-7. PubMed ID: 7320124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance liquid chromatography with electrochemical detection as a highly efficient tool for studying catecholaminergic systems. I. Quantification of noradrenaline, adrenaline and dopamine in cultured adrenal medullary cells.
    Müller TH; Unsicker K
    J Neurosci Methods; 1981 Jun; 4(1):39-52. PubMed ID: 7253699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Separation and fluorimetric determination of adrenaline and noradrenaline. Combination of a high-pressure liquid chromatograph with an automatic analysis system].
    Schwedt G
    J Chromatogr; 1977 Sep; 143(5):463-71. PubMed ID: 893636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [An improved trihydroxyindole method for the determination of urinary catecholamines].
    Werner U
    Z Klin Chem Klin Biochem; 1975 Aug; 13(8):341-9. PubMed ID: 3040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.