These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 7576000)
1. Lack of requirement for CD8+ cells in recovery from and resistance to experimental autoimmune encephalomyelitis. Lohse AW; Schwerdt A; Herkel J; Spahn T; Meyer zum Büschenfelde KH J Autoimmun; 1995 Jun; 8(3):395-404. PubMed ID: 7576000 [TBL] [Abstract][Full Text] [Related]
2. A suppressor T-lymphocyte cell line for autoimmune encephalomyelitis. Ellerman KE; Powers JM; Brostoff SW Nature; 1988 Jan; 331(6153):265-7. PubMed ID: 2447505 [TBL] [Abstract][Full Text] [Related]
3. Induction of resistance to active experimental allergic encephalomyelitis by myelin basic protein-specific Th2 cell lines generated in the presence of glucocorticoids and IL-4. Ramírez F; Mason D Eur J Immunol; 2000 Mar; 30(3):747-58. PubMed ID: 10741389 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the cellular infiltrate in the iris during experimental autoimmune encephalomyelitis. de Vos AF; Dick AD; Klooster J; Broersma L; McMenamin PG; Kijlstra A Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3001-10. PubMed ID: 10967057 [TBL] [Abstract][Full Text] [Related]
5. Nitric oxide plays a critical role in the recovery of Lewis rats from experimental autoimmune encephalomyelitis and the maintenance of resistance to reinduction. O'Brien NC; Charlton B; Cowden WB; Willenborg DO J Immunol; 1999 Dec; 163(12):6841-7. PubMed ID: 10586085 [TBL] [Abstract][Full Text] [Related]
6. Experimental autoimmune encephalomyelitis mediated by CD8+ T cells. Ji Q; Goverman J Ann N Y Acad Sci; 2007 Apr; 1103():157-66. PubMed ID: 17376824 [TBL] [Abstract][Full Text] [Related]
7. Essential role of TGF-beta in the natural resistance to experimental allergic encephalomyelitis in rats. Cautain B; Damoiseaux J; Bernard I; van Straaten H; van Breda Vriesman P; Boneu B; Druet P; Saoudi A Eur J Immunol; 2001 Apr; 31(4):1132-40. PubMed ID: 11298338 [TBL] [Abstract][Full Text] [Related]
8. Acquired resistance to experimental autoimmune encephalomyelitis is independent of V beta usage. Johnson BD; Nardella JP; McConnell TJ; Mannie MD Cell Immunol; 1997 Jul; 179(1):55-65. PubMed ID: 9259772 [TBL] [Abstract][Full Text] [Related]
9. Regulation of experimental autoimmune encephalomyelitis by CD4+, CD25+ and CD8+ T cells: analysis using depleting antibodies. Montero E; Nussbaum G; Kaye JF; Perez R; Lage A; Ben-Nun A; Cohen IR J Autoimmun; 2004 Aug; 23(1):1-7. PubMed ID: 15236747 [TBL] [Abstract][Full Text] [Related]
10. Endogenous CD4+BV8S2- T cells from TG BV8S2+ donors confer complete protection against spontaneous experimental encephalomyelitis (Sp-EAE) in TCR transgenic, RAG-/- mice. Matejuk A; Buenafe AC; Dwyer J; Ito A; Silverman M; Zamora A; Subramanian S; Vandenbark AA; Offner H J Neurosci Res; 2003 Jan; 71(1):89-103. PubMed ID: 12478617 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of experimental autoimmune encephalomyelitis by an antibody to the intercellular adhesion molecule ICAM-1. Archelos JJ; Jung S; Mäurer M; Schmied M; Lassmann H; Tamatani T; Miyasaka M; Toyka KV; Hartung HP Ann Neurol; 1993 Aug; 34(2):145-54. PubMed ID: 7687838 [TBL] [Abstract][Full Text] [Related]
12. Autoimmune encephalomyelitis (EAE) mediated or prevented by T lymphocyte lines directed against diverse antigenic determinants of myelin basic protein. Vaccination is determinant specific. Holoshitz J; Frenkel A; Ben-Nun A; Cohen IR J Immunol; 1983 Dec; 131(6):2810-3. PubMed ID: 6196400 [TBL] [Abstract][Full Text] [Related]
13. Long-term depletion of CD8+ T cells in vivo in the rat: no observed role for CD8+ (cytotoxic/suppressor) cells in the immunoregulation of experimental allergic encephalomyelitis. Sedgwick JD Eur J Immunol; 1988 Apr; 18(4):495-502. PubMed ID: 2966737 [TBL] [Abstract][Full Text] [Related]
14. Recombinant T cell receptor molecules can prevent and reverse experimental autoimmune encephalomyelitis: dose effects and involvement of both CD4 and CD8 T cells. Kumar V; Coulsell E; Ober B; Hubbard G; Sercarz E; Ward ES J Immunol; 1997 Nov; 159(10):5150-6. PubMed ID: 9366445 [TBL] [Abstract][Full Text] [Related]
15. Regulatory circuits in autoimmunity: recruitment of counter-regulatory CD8+ T cells by encephalitogenic CD4+ T line cells. Sun D; Ben-Nun A; Wekerle H Eur J Immunol; 1988 Dec; 18(12):1993-9. PubMed ID: 2905995 [TBL] [Abstract][Full Text] [Related]
16. Suppression of experimental autoimmune encephalomyelitis by intravenously administered polyclonal immunoglobulins. Achiron A; Mor F; Margalit R; Cohen IR; Lider O; Miron S J Autoimmun; 2000 Nov; 15(3):323-30. PubMed ID: 11040073 [TBL] [Abstract][Full Text] [Related]
17. Apoptosis of V beta 8.2+ T lymphocytes in the spinal cord during recovery from experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein. McCombe PA; Nickson I; Tabi Z; Pender MP J Neurol Sci; 1996 Jul; 139(1):1-6. PubMed ID: 8836965 [TBL] [Abstract][Full Text] [Related]
19. Molecular and genetic requirements for preferential recruitment of TCRBV8S2+ T cells in Lewis rat experimental autoimmune encephalomyelitis. Weissert R; Svenningsson A; Lobell A; de Graaf KL; Andersson R; Olsson T J Immunol; 1998 Jan; 160(2):681-90. PubMed ID: 9551903 [TBL] [Abstract][Full Text] [Related]
20. Epicutaneous (EC) immunization with myelin basic protein (MBP) induces TCRalphabeta+ CD4+ CD8+ double positive suppressor cells that protect from experimental autoimmune encephalomyelitis (EAE). Tutaj M; Szczepanik M J Autoimmun; 2007 Jun; 28(4):208-15. PubMed ID: 17442539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]