These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7576086)

  • 1. Glutathione adducts, not carbamylated lysines, are the major modification of lens alpha-crystallins from renal failure patients.
    Smith JB; Shun-Shin GA; Sun Y; Miesbauer LR; Yang Z; Yang Z; Zhou X; Schwedler J; Smith DL
    J Protein Chem; 1995 Apr; 14(3):179-88. PubMed ID: 7576086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-translational modifications of water-soluble human lens crystallins from young adults.
    Miesbauer LR; Zhou X; Yang Z; Yang Z; Sun Y; Smith DL; Smith JB
    J Biol Chem; 1994 Apr; 269(17):12494-502. PubMed ID: 8175657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiolation of the gammaB-crystallins in intact bovine lens exposed to hydrogen peroxide.
    Hanson SR; Chen AA; Smith JB; Lou MF
    J Biol Chem; 1999 Feb; 274(8):4735-42. PubMed ID: 9988710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo carbamylation and acetylation of water-soluble human lens alphaB-crystallin lysine 92.
    Lapko VN; Smith DL; Smith JB
    Protein Sci; 2001 Jun; 10(6):1130-6. PubMed ID: 11369851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rates of carbamylation of specific lysyl residues in bovine alpha-crystallins.
    Qin W; Smith JB; Smith DL
    J Biol Chem; 1992 Dec; 267(36):26128-33. PubMed ID: 1464624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifications of the water-insoluble human lens alpha-crystallins.
    Lund AL; Smith JB; Smith DL
    Exp Eye Res; 1996 Dec; 63(6):661-72. PubMed ID: 9068373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible binding of kynurenine to lens proteins: potential protection by glutathione in young lenses.
    Parker NR; Korlimbinis A; Jamie JF; Davies MJ; Truscott RJ
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3705-13. PubMed ID: 17652742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry.
    Ma Z; Hanson SR; Lampi KJ; David LL; Smith DL; Smith JB
    Exp Eye Res; 1998 Jul; 67(1):21-30. PubMed ID: 9702175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reaction of bovine lens alpha A-crystallin with aspirin.
    Hasan A; Smith JB; Qin W; Smith DL
    Exp Eye Res; 1993 Jul; 57(1):29-35. PubMed ID: 8405169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the major components of the high molecular weight crystallins from old human lenses.
    Yang Z; Chamorro M; Smith DL; Smith JB
    Curr Eye Res; 1994 Jun; 13(6):415-21. PubMed ID: 7924405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance of human betaB2-crystallin to in vivo modification.
    Zhang Z; David LL; Smith DL; Smith JB
    Exp Eye Res; 2001 Aug; 73(2):203-11. PubMed ID: 11446770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the posttranslational modifications of bovine lens alpha B-crystallins by mass spectrometry.
    Smith JB; Sun Y; Smith DL; Green B
    Protein Sci; 1992 May; 1(5):601-8. PubMed ID: 1304359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cleavage of amino acid residue(s) from the N-terminal region of alpha A- and alpha B-crystallins in human crystalline lens during aging.
    Kamei A; Iwase H; Masuda K
    Biochem Biophys Res Commun; 1997 Feb; 231(2):373-8. PubMed ID: 9070282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary structure of rabbit lens alpha-crystallins.
    Parveen R; Smith JB; Sun Y; Smith DL
    J Protein Chem; 1993 Feb; 12(1):93-101. PubMed ID: 8427639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility?
    Wilmarth PA; Tanner S; Dasari S; Nagalla SR; Riviere MA; Bafna V; Pevzner PA; David LL
    J Proteome Res; 2006 Oct; 5(10):2554-66. PubMed ID: 17022627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deamidation and disulfide bonding in human lens gamma-crystallins.
    Hanson SR; Smith DL; Smith JB
    Exp Eye Res; 1998 Sep; 67(3):301-12. PubMed ID: 9778411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.