These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 7576351)
1. Photosynthetic oxidation of MnS and FeS by Chlorobium spp. Borrego C; GarcĂa-Gil J Microbiologia; 1995 Sep; 11(3):351-8. PubMed ID: 7576351 [TBL] [Abstract][Full Text] [Related]
2. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria. Lin S; Krause F; Voordouw G Appl Microbiol Biotechnol; 2009 May; 83(2):369-76. PubMed ID: 19290520 [TBL] [Abstract][Full Text] [Related]
3. Sorption of metals by Chlorobium spp. Garcia-Gil J; Borrego C Microbiologia; 1997 Dec; 13(4):445-52. PubMed ID: 9608518 [TBL] [Abstract][Full Text] [Related]
4. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Rohwerder T; Gehrke T; Kinzler K; Sand W Appl Microbiol Biotechnol; 2003 Dec; 63(3):239-48. PubMed ID: 14566432 [TBL] [Abstract][Full Text] [Related]
5. [Sulfur and iron cycling bacteria in low-sulfate meromictic Lake Kuznechikha]. Gorlenko VM; Vainshtein MB; Chebotarev EN Mikrobiologiia; 1980; 49(5):804-12. PubMed ID: 6777648 [TBL] [Abstract][Full Text] [Related]
6. Experimental study and steady-state simulation of biogeochemical processes in laboratory columns with aquifer material. Amirbahman A; Schönenberger R; Furrer G; Zobrist J J Contam Hydrol; 2003 Jul; 64(3-4):169-90. PubMed ID: 12814879 [TBL] [Abstract][Full Text] [Related]
7. [Ecophysiological properties of photosynthesizing bacteria from the Black Sea chemocline zone]. Gorlenko VM; Mikheev PV; Rusanov II; Pimenov NV; Ivanov MV Mikrobiologiia; 2005; 74(2):239-47. PubMed ID: 15938401 [TBL] [Abstract][Full Text] [Related]
8. A feasibility study of metal sulfide (FeS and MnS) on simultaneous denitrification and chromate reduction. Pan J; Liu L; Pan H; Yang L; Su M; Wei C J Hazard Mater; 2022 Feb; 424(Pt B):127491. PubMed ID: 34673399 [TBL] [Abstract][Full Text] [Related]
9. Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium "Chlorochromatium aggregatum". Vogl K; Glaeser J; Pfannes KR; Wanner G; Overmann J Arch Microbiol; 2006 Jun; 185(5):363-72. PubMed ID: 16555074 [TBL] [Abstract][Full Text] [Related]
10. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Marschall E; Jogler M; Hessge U; Overmann J Environ Microbiol; 2010 May; 12(5):1348-62. PubMed ID: 20236170 [TBL] [Abstract][Full Text] [Related]
11. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Xin B; Zhang D; Zhang X; Xia Y; Wu F; Chen S; Li L Bioresour Technol; 2009 Dec; 100(24):6163-9. PubMed ID: 19656671 [TBL] [Abstract][Full Text] [Related]
12. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Frigaard NU; Bryant DA Arch Microbiol; 2004 Oct; 182(4):265-76. PubMed ID: 15340781 [TBL] [Abstract][Full Text] [Related]
13. Discrimination among iron sulfide species formed in microbial cultures. Popa R; Kinkle BK J Microbiol Methods; 2000 Oct; 42(2):167-74. PubMed ID: 11018273 [TBL] [Abstract][Full Text] [Related]
14. Photochemical disproportionation of sulfur into sulfide and sulfate by Chlorobium limicola forma thiosulfatophilum. Paschinger H; Paschinger J; Gaffron H Arch Mikrobiol; 1974 Mar; 96(4):341-51. PubMed ID: 4209228 [No Abstract] [Full Text] [Related]
15. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments. Hegler F; Posth NR; Jiang J; Kappler A FEMS Microbiol Ecol; 2008 Nov; 66(2):250-60. PubMed ID: 18811650 [TBL] [Abstract][Full Text] [Related]
16. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A. Vera M; Schippers A; Sand W Appl Microbiol Biotechnol; 2013 Sep; 97(17):7529-41. PubMed ID: 23720034 [TBL] [Abstract][Full Text] [Related]
17. [Fractionation of stable sulfur isotopes by green photosynthetic bacteria]. Kondrat'eva EN; Mekhtieva VL Mikrobiologiia; 1966; 35(4):569-72. PubMed ID: 6002916 [No Abstract] [Full Text] [Related]
18. Removal of hydrogen sulfide by Chlorobium thiosulfatophilum in immobilized-cell and sulfur-settling free-cell recycle reactors. Kim BW; Chang HN Biotechnol Prog; 1991; 7(6):495-500. PubMed ID: 1367751 [TBL] [Abstract][Full Text] [Related]
19. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Kaksonen AH; Franzmann PD; Puhakka JA Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513 [TBL] [Abstract][Full Text] [Related]
20. [Pigments of green sulfur bacteria isolated from reservoirs of Iavoriv sulfur deposit]. Baran IM; Hudz' SP; Hnatush SO; Fedorovych AM Mikrobiol Z; 2004; 66(1):10-8. PubMed ID: 15104050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]