These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7576594)

  • 1. The effects of glibenclamide on tetanic force and intracellular calcium in normal and fatigued mouse skeletal muscle.
    Duty S; Allen DG
    Exp Physiol; 1995 Jul; 80(4):529-41. PubMed ID: 7576594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of cromakalim on intracellular [Ca2+] in isolated rat skeletal muscle during fatigue and metabolic blockade.
    Burton FL; Smith GL
    Exp Physiol; 1997 May; 82(3):469-83. PubMed ID: 9179567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic calcium and the relaxation of canine coronary arterial smooth muscle produced by cromakalim, pinacidil and nicorandil.
    Yanagisawa T; Teshigawara T; Taira N
    Br J Pharmacol; 1990 Sep; 101(1):157-65. PubMed ID: 2149290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of ATP in the regulation of intracellular Ca2+ release in single fibres of mouse skeletal muscle.
    Allen DG; Lännergren J; Westerblad H
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):587-600. PubMed ID: 9051572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.
    Cifelli C; Boudreault L; Gong B; Bercier JP; Renaud JM
    Exp Physiol; 2008 Oct; 93(10):1126-38. PubMed ID: 18586858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of action of a K+ channel activator BRL 38227 on ATP-sensitive K+ channels in mouse skeletal muscle fibres.
    Hussain M; Wareham AC; Head SI
    J Physiol; 1994 Aug; 478 Pt 3(Pt 3):523-32. PubMed ID: 7965862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of glibenclamide on frog skeletal muscle: evidence for K+ATP channel activation during fatigue.
    Light PE; Comtois AS; Renaud JM
    J Physiol; 1994 Mar; 475(3):495-507. PubMed ID: 8006831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that pinacidil may promote the opening of ATP-sensitive K+ channels yet inhibit the opening of Ca2(+)-activated K+ channels in K(+)-contracted canine mesenteric artery.
    Masuzawa K; Matsuda T; Asano M
    Br J Pharmacol; 1990 May; 100(1):143-9. PubMed ID: 2115387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blocking ATP-sensitive K+ channel during metabolic inhibition impairs muscle contractility.
    Gramolini A; Renaud JM
    Am J Physiol; 1997 Jun; 272(6 Pt 1):C1936-46. PubMed ID: 9227423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pinacidil suppresses contractility and preserves energy but glibenclamide has no effect during muscle fatigue.
    Matar W; Nosek TM; Wong D; Renaud J
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C404-16. PubMed ID: 10666037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of glibenclamide on cytosolic calcium concentrations and on contraction of the rabbit aorta.
    Yoshitake K; Hirano K; Kanaide H
    Br J Pharmacol; 1991 Jan; 102(1):113-8. PubMed ID: 1904292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres.
    Chin ER; Allen DG
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):831-40. PubMed ID: 9769425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg(2+) and pH.
    Allard B; Lazdunski M; Rougier O
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):283-96. PubMed ID: 7666359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice.
    Allard B; Rougier O
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):319-25. PubMed ID: 9032681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexistence of two classes of glibenclamide-inhibitable ATP-regulated K+ channels in avian skeletal muscle.
    Fosset M; Allard B; Lazdunski M
    Pflugers Arch; 1995 Nov; 431(1):117-24. PubMed ID: 8584408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder.
    Bonev AD; Nelson MT
    Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue preconditioning increases fatigue resistance in mouse flexor digitorum brevis muscles with non-functioning K(ATP) channels.
    Boudreault L; Cifelli C; Bourassa F; Scott K; Renaud JM
    J Physiol; 2010 Nov; 588(Pt 22):4549-62. PubMed ID: 20855438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.