These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7576658)

  • 1. Identification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR.
    Coulter KL; Périer F; Radeke CM; Vandenberg CA
    Neuron; 1995 Nov; 15(5):1157-68. PubMed ID: 7576658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gating of inward rectifier K+ channels by proton-mediated interactions of N- and C-terminal domains.
    Qu Z; Yang Z; Cui N; Zhu G; Liu C; Xu H; Chanchevalap S; Shen W; Wu J; Li Y; Jiang C
    J Biol Chem; 2000 Oct; 275(41):31573-80. PubMed ID: 10896660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inward rectifier potassium channel Kir 2.3 is inhibited by internal sulfhydryl modification.
    Radeke CM; Conti LR; Vandenberg CA
    Neuroreport; 1999 Nov; 10(16):3277-82. PubMed ID: 10599834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers.
    Sabirov RZ; Tominaga T; Miwa A; Okada Y; Oiki S
    J Gen Physiol; 1997 Dec; 110(6):665-77. PubMed ID: 9382895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing a potassium channel pore with an engineered protonatable site.
    Lu Z; MacKinnon R
    Biochemistry; 1995 Oct; 34(40):13133-8. PubMed ID: 7548074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single residue contributes to the difference between Kir4.1 and Kir1.1 channels in pH sensitivity, rectification and single channel conductance.
    Xu H; Yang Z; Cui N; Chanchevalap S; Valesky WW; Jiang C
    J Physiol; 2000 Oct; 528 Pt 2(Pt 2):267-77. PubMed ID: 11034617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxy-terminal determinants of conductance in inward-rectifier K channels.
    Zhang YY; Robertson JL; Gray DA; Palmer LG
    J Gen Physiol; 2004 Dec; 124(6):729-39. PubMed ID: 15572348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary structure and characterization of a small-conductance inwardly rectifying potassium channel from human hippocampus.
    Périer F; Radeke CM; Vandenberg CA
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):6240-4. PubMed ID: 8016146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histidine(118) in the S2-S3 linker specifically controls activation of the KAT1 channel expressed in Xenopus oocytes.
    Tang XD; Marten I; Dietrich P; Ivashikina N; Hedrich R; Hoshi T
    Biophys J; 2000 Mar; 78(3):1255-69. PubMed ID: 10692314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of structural elements involved in G protein gating of the GIRK1 potassium channel.
    Slesinger PA; Reuveny E; Jan YN; Jan LY
    Neuron; 1995 Nov; 15(5):1145-56. PubMed ID: 7576657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel.
    Yang J; Jan YN; Jan LY
    Neuron; 1995 May; 14(5):1047-54. PubMed ID: 7748552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of pH sensing in the two-pore domain K(+) channels TASK-1 and -2.
    Morton MJ; O'Connell AD; Sivaprasadarao A; Hunter M
    Pflugers Arch; 2003 Feb; 445(5):577-83. PubMed ID: 12634929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of an engineered pore cysteine locks a voltage-gated K+ channel in a nonconducting state.
    Zhang HJ; Liu Y; Zühlke RD; Joho RH
    Biophys J; 1996 Dec; 71(6):3083-90. PubMed ID: 8968579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of the C-terminal domain to gating properties of inward rectifier potassium channels.
    Pessia M; Bond CT; Kavanaugh MP; Adelman JP
    Neuron; 1995 May; 14(5):1039-45. PubMed ID: 7748551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of a delayed rectifier K+ channel to a voltage-gated inward rectifier K+ channel by three amino acid substitutions.
    Miller AG; Aldrich RW
    Neuron; 1996 Apr; 16(4):853-8. PubMed ID: 8608003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gating of inward-rectifier K+ channels by intracellular pH.
    Schulte U; Fakler B
    Eur J Biochem; 2000 Oct; 267(19):5837-41. PubMed ID: 10998042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of the M2 ion channel of influenza virus: a role for the transmembrane domain histidine residue.
    Wang C; Lamb RA; Pinto LH
    Biophys J; 1995 Oct; 69(4):1363-71. PubMed ID: 8534806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating.
    Choe H; Zhou H; Palmer LG; Sackin H
    Am J Physiol; 1997 Oct; 273(4):F516-29. PubMed ID: 9362329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH.
    Yang Z; Xu H; Cui N; Qu Z; Chanchevalap S; Shen W; Jiang C
    J Gen Physiol; 2000 Jul; 116(1):33-45. PubMed ID: 10871638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.