BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7577362)

  • 1. Contribution of selected fungi to the reduction of cyanogen levels during solid substrate fermentation of cassava.
    Essers AJ; Jurgens CM; Nout MJ
    Int J Food Microbiol; 1995 Jul; 26(2):251-7. PubMed ID: 7577362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing cassava toxicity by heap-fermentation in Uganda.
    Essers AJ; Ebong C; van der Grift RM; Nout MJ; Otim-Nape W; Rosling H
    Int J Food Sci Nutr; 1995 May; 46(2):125-36. PubMed ID: 7621084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of increased linamarin degradation during solid-substrate fermentation of cassava.
    Essers AJ; Bennik MH; Nout MJ
    World J Microbiol Biotechnol; 1995 May; 11(3):266-70. PubMed ID: 24414645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D; Sayre R
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of cyanide levels in cassava during sequential sundrying and solid state fermentation.
    Zvauya R; Muzondo MI
    Int J Food Sci Nutr; 1995 Feb; 46(1):13-6. PubMed ID: 7712337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical changes in micro-fungi fermented cassava flour produced from low- and medium-cyanide variety of cassava tubers.
    Oboh G; Oladunmoye MK
    Nutr Health; 2007; 18(4):355-67. PubMed ID: 18087867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of fungi fermentation on organoleptic properties, energy content and in-vitro multienzyme digestibility of cassava products (flour & gari).
    Akindahunsi AA; Oboh G
    Nutr Health; 2003; 17(2):131-8. PubMed ID: 14653508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms.
    Lei V; Amoa-Awua WK; Brimer L
    Int J Food Microbiol; 1999 Dec; 53(2-3):169-84. PubMed ID: 10634708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening for Bacillus subtilis group isolates that degrade cyanogens at pH 4.5-5.0.
    Abban S; Brimer L; Abdelgadir WS; Jakobsen M; Thorsen L
    Int J Food Microbiol; 2013 Jan; 161(1):31-5. PubMed ID: 23261810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of moulds and yeasts to the fermentation of 'agbelima' cassava dough.
    Amoa-Awua WK; Frisvad JC; Sefa-Dedeh S; Jakobsen M
    J Appl Microbiol; 1997 Sep; 83(3):288-96. PubMed ID: 9351208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein improvement in Gari by the use of pure cultures of microorganisms involved in the natural fermentation process.
    Ahaotu I; Ogueke CC; Owuamanam CI; Ahaotu NN; Nwosu JN
    Pak J Biol Sci; 2011 Oct; 14(20):933-8. PubMed ID: 22514894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of selected fungi on the reduction of gossypol levels and nutritional value during solid substrate fermentation of cottonseed meal.
    Zhang WJ; Xu ZR; Sun JY; Yang X
    J Zhejiang Univ Sci B; 2006 Sep; 7(9):690-5. PubMed ID: 16909468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava.
    Kannangara R; Motawia MS; Hansen NK; Paquette SM; Olsen CE; Møller BL; Jørgensen K
    Plant J; 2011 Oct; 68(2):287-301. PubMed ID: 21736650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of cyanogen-free transgenic cassava.
    Siritunga D; Sayre RT
    Planta; 2003 Jul; 217(3):367-73. PubMed ID: 14520563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.
    Narayanan NN; Ihemere U; Ellery C; Sayre RT
    PLoS One; 2011; 6(7):e21996. PubMed ID: 21799761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil nutrient adequacy for optimal cassava growth, implications on cyanogenic glucoside production: A case of konzo-affected Mtwara region, Tanzania.
    Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G
    PLoS One; 2019; 14(5):e0216708. PubMed ID: 31083702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects on the cyanogenic glycoside content of fermenting cassava root pulp by beta-glucosidase and microbial activities.
    Maduagwu EN
    Toxicol Lett; 1983 Mar; 15(4):335-9. PubMed ID: 6404010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food.
    Kostinek M; Specht I; Edward VA; Schillinger U; Hertel C; Holzapfel WH; Franz CM
    Syst Appl Microbiol; 2005 Aug; 28(6):527-40. PubMed ID: 16104351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanogenesis in cassava and its molecular manipulation for crop improvement.
    McMahon J; Sayre R; Zidenga T
    J Exp Bot; 2022 Apr; 73(7):1853-1867. PubMed ID: 34905020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanogenic potential in cassava and its influence on a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae).
    Riis L; Bellotti AC; Bonierbale M; O'Brien GM
    J Econ Entomol; 2003 Dec; 96(6):1905-14. PubMed ID: 14977132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.