These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 7577443)

  • 1. Differential expression of neural cell adhesion molecule (NCAM) during osteogenesis and secondary chondrogenesis in the embryonic chick.
    Fang J; Hall BK
    Int J Dev Biol; 1995 Jun; 39(3):519-28. PubMed ID: 7577443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-CAM is not required for initiation of secondary chondrogenesis: the role of N-CAM in skeletal condensation and differentiation.
    Fang J; Hall BK
    Int J Dev Biol; 1999 Jul; 43(4):335-42. PubMed ID: 10470650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective proliferation and accumulation of chondroprogenitor cells as the mode of action of biomechanical factors during secondary chondrogenesis.
    Hall BK
    Teratology; 1979 Aug; 20(1):81-91. PubMed ID: 515966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis.
    Widelitz RB; Jiang TX; Murray BA; Chuong CM
    J Cell Physiol; 1993 Aug; 156(2):399-411. PubMed ID: 8344994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of movement and tissue interactions in the development and growth of bone and secondary cartilage in the clavicle of the embryonic chick.
    Hall BK
    J Embryol Exp Morphol; 1986 Apr; 93():133-52. PubMed ID: 3734681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient chondrogenic phase in the intramembranous pathway during normal skeletal development.
    Nah HD; Pacifici M; Gerstenfeld LC; Adams SL; Kirsch T
    J Bone Miner Res; 2000 Mar; 15(3):522-33. PubMed ID: 10750567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divide, accumulate, differentiate: cell condensation in skeletal development revisited.
    Hall BK; Miyake T
    Int J Dev Biol; 1995 Dec; 39(6):881-93. PubMed ID: 8901191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion molecules in skeletogenesis: I. Transient expression of neural cell adhesion molecules (NCAM) in osteoblasts during endochondral and intramembranous ossification.
    Lee YS; Chuong CM
    J Bone Miner Res; 1992 Dec; 7(12):1435-46. PubMed ID: 1481729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro.
    Delise AM; Tuan RS
    Dev Dyn; 2002 Oct; 225(2):195-204. PubMed ID: 12242719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the mandibular skeleton in the embryonic chick as evaluated using the DNA-inhibiting agent 5-fluoro-2'-deoxyuridine.
    Hall BK
    J Craniofac Genet Dev Biol; 1987; 7(2):145-59. PubMed ID: 2957385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary chondrocyte-derived Ihh stimulates proliferation of periosteal cells during chick development.
    Buxton PG; Hall B; Archer CW; Francis-West P
    Development; 2003 Oct; 130(19):4729-39. PubMed ID: 12925598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro studies on skeletogenic potential of membrane bone periosteal cells.
    Thorogood P
    J Embryol Exp Morphol; 1979 Dec; 54():185-207. PubMed ID: 528865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tenascin-C is associated with early stages of chondrogenesis by chick mandibular ectomesenchymal cells in vivo and in vitro.
    Gluhak J; Mais A; Mina M
    Dev Dyn; 1996 Jan; 205(1):24-40. PubMed ID: 8770549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol exposure stimulates cartilage differentiation by embryonic limb mesenchyme cells.
    Kulyk WM; Hoffman LM
    Exp Cell Res; 1996 Mar; 223(2):290-300. PubMed ID: 8601406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the L-proline analog, L-azetidine-2-carboxylic acid (LACA) to analyse embryonic growth and determination and expression of the chondrogenic phenotype in vivo and in vitro.
    Hall BK
    Anat Rec; 1978 Feb; 190(2):243-55. PubMed ID: 629405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro.
    DeLise AM; Tuan RS
    J Cell Biochem; 2002; 87(3):342-59. PubMed ID: 12397616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibronectin mRNA alternative splicing is temporally and spatially regulated during chondrogenesis in vivo and in vitro.
    Gehris AL; Oberlender SA; Shepley KJ; Tuan RS; Bennett VD
    Dev Dyn; 1996 Jun; 206(2):219-30. PubMed ID: 8725289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis.
    Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T
    Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of Hoxa2 in cells entering chondrogenesis impairs overall cartilage development.
    Massip L; Ectors F; Deprez P; Maleki M; Behets C; Lengelé B; Delahaut P; Picard J; Rezsöhazy R
    Differentiation; 2007 Mar; 75(3):256-67. PubMed ID: 17359301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.